Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Veerle Segers is active.

Publication


Featured researches published by Veerle Segers.


Gait & Posture | 2009

Experimental study of the influence of the m. tibialis anterior on the walk-to-run transition by means of a powered ankle-foot exoskeleton

Philippe Malcolm; Veerle Segers; I. Van Caekenberghe; Dirk De Clercq

The purpose of this study was to investigate the role of the tibialis anterior (TA) in the walk-to-run transition (WRT) by means of an experimental manipulation that allows increasing or decreasing muscular effort of the TA around heel contact. Eight subjects performed five WRTs on an accelerating treadmill wearing a powered ankle-foot exoskeleton. There was a trend towards a lower WRT-speed in the condition in which the TA was resisted (2.06+/-0.09 m s(-1)) than in the control condition (2.10+/-0.10 m s(-1)). This finding could not be extrapolated in the opposite direction, as there was no significant difference between the assist and control condition. The TA activation burst around heel contact showed a pattern that led to the hypothesis that the TA activation reaches a critical level at the fourth last heel contact before the WRT which triggers the WRT. The fact that the results comply with previous transition studies emphasises the role of the TA as a determinant of the WRT.


The Journal of Experimental Biology | 2007

Dynamics of the body centre of mass during actual acceleration across transition speed

Veerle Segers; Peter Aerts; Matthieu Lenoir; Dirk De Clerq

SUMMARY Judged by whole body dynamics, walking and running in humans clearly differ. When walking, potential and kinetic energy fluctuate out-of-phase and energy is partially recovered in a pendulum-like fashion. In contrast, running involves in-phase fluctuations of the mechanical energy components of the body centre of mass, allowing elastic energy recovery. We show that, when constantly accelerating across the transition speed, humans make the switch from walking to running abruptly in one single step. In this step, active mechanical energy input triples the normal step-by-step energy increment needed to power the imposed constant acceleration. This extra energy is needed to launch the body into the flight phase of the first running step and to bring the trunk into its more inclined orientation during running. Locomotor cycles immediately proceed with the typical in-phase fluctuations of kinetic and potential energy. As a result, the pendular energy transfer drops in one step from 43% to 5%. Kinematically, the transition step is achieved by landing with the knee and hip significantly more flexed compared to the previous walking steps. Flexion in these joints continues during the first half of stance, thus bringing the centre of mass to its deepest position halfway through stance phase to allow for the necessary extension to initiate the running gait. From this point of view, the altered landing conditions seem to constitute the actual transition.


Journal of Orthopaedic Research | 2012

A clinically applicable six-segmented foot model.

Sophie De Mits; Veerle Segers; James Woodburn; Dirk Elewaut; Dirk De Clercq; Philip Roosen

We describe a multi‐segmented foot model comprising lower leg, rearfoot, midfoot, lateral forefoot, medial forefoot, and hallux for routine use in a clinical setting. The Ghent Foot Model describes the kinematic patterns of functional units of the foot, especially the midfoot, to investigate patient populations where midfoot deformation or dysfunction is an important feature, for example, rheumatoid arthritis patients. Data were obtained from surface markers by a 6 camera motion capture system at 500 Hz. Ten healthy subjects walked barefoot along a 12 m walkway at self‐selected speed. Joint angles (rearfoot to shank, midfoot to rearfoot, lateral and medial forefoot to midfoot, and hallux to medial forefoot) in the sagittal, frontal, and transverse plane are reported according to anatomically based reference frames. These angles were calculated and reported during the foot rollover phases in stance, detected by synchronized plantar pressure measurements. Repeated measurements of each subject revealed low intra‐subject variability, varying between 0.7° and 2.3° for the minimum values, between 0.5° and 2.1° for the maximum values, and between 0.8° and 5.8° for the ROM. The described movement patterns were repeatable and consistent with biomechanical and clinical knowledge. As such, the Ghent Foot model permits intersegment, in vivo motion measurement of the foot, which is crucial for both clinical and research applications.


Gait & Posture | 2013

Mechanics of overground accelerated running vs. running on an accelerated treadmill

Ine Van Caekenberghe; Veerle Segers; Patrick Willems; Thierry Gosseye; Peter Aerts; Dirk De Clercq

Unsteady state gait involving net accelerations has been studied overground and on a treadmill. Yet it has never been tested if and to what extent both set-ups are mechanically equal. This study documents the differences in ground reaction forces for accelerated running on an instrumented runway and running on an accelerating treadmill by building a theoretical framework which is experimentally put to the test. It is demonstrated that, in contrast to overground, no mean fore-after force impulse should be generated to follow an accelerating treadmill due to the absence of linear whole body acceleration. Accordingly, the adaptations in the braking phase (less braking) and propulsive phase (more propulsion) to accelerate overground are not present to follow an accelerating treadmill. It can be concluded that running on an accelerating treadmill is mechanically different from accelerated running overground.


Gait & Posture | 2009

Experimental study on the role of the ankle push off in the walk-to-run transition by means of a powered ankle-foot-exoskeleton

Philippe Malcolm; Pieter Fiers; Veerle Segers; I. Van Caekenberghe; Matthieu Lenoir; Dirk De Clercq

The goal of this study was to analyse the role of the plantarflexor muscles in the walk-to-run transition (WRT) by means of a powered ankle-foot-exoskeleton. 11 female subjects performed several WRTs on an accelerating treadmill while their plantarflexors were assisted or resisted during push off. The WRT speed was lower in the resist condition than in the control condition which reinforces hypotheses from previous simulations, descriptive and experimental studies. There was no increase in WRT speed in the assist condition which is in contrast to another study where the plantarflexor push off was assisted indirectly by a horizontal traction at waist level. The lack of effect from the assist condition in the present study is possibly due to the narrowly focused nature of the experimental manipulation.


Gait & Posture | 2010

Influence of treadmill acceleration on actual walk-to-run transition

I. Van Caekenberghe; Veerle Segers; K. De Smet; Peter Aerts; Dirk De Clercq

When accelerating continuously, humans spontaneously change from a walking to a running pattern by means of a walk-to-run transition (WRT). Results of previous studies indicate that when higher treadmill accelerations are imposed, higher WRT-speeds can be expected. By studying the kinematics of the WRT at different accelerations, the underlying mechanisms can be unravelled. 19 young, healthy female subjects performed walk-to-run transitions on a constantly accelerating treadmill (0.1, 0.2 and 0.5 m s(-2)). A higher acceleration induced a higher WRT-speed, by effecting the preparation of transition, as well as the actual transition step. Increasing the acceleration caused a higher WRT-speed as a result of a greater step length during the transition step, which was mainly a consequence of a prolonged airborne phase. Besides this effect on the transition step, the direct preparation phase of transition (i.e. the last walking step before transition) appeared to fulfil specific constraints required to execute the transition regardless of the acceleration imposed. This highlights an important role for this step in the debate regarding possible determinants of WRT. In addition spatiotemporal and kinematical data confirmed that WRT remains a discontinuous change of gait pattern in all accelerations imposed. It is concluded that the walk-to-run transition is a discontinuous switch from walking to running which depends on the magnitude of treadmill belt acceleration.


Journal of the Royal Society Interface | 2013

Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill

Ine Van Caekenberghe; Veerle Segers; Peter Aerts; Patrick Willems; Dirk De Clercq

Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior–posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level of the hip and lower power absorption at the knee as the result of subtle differences in joint velocity. On a treadmill, ground reaction forces are not influenced by acceleration and, compared with overground, virtually no kinesiological adaptations to an accelerating belt are observed. Consequently, adaptations to acceleration during running differ from treadmill to overground and should be studied in the condition of interest.


Gait & Posture | 2010

Overground vs. treadmill walk-to-run transition

I. Van Caekenberghe; K. De Smet; Veerle Segers; Dirk De Clercq

Determination of the walk-to-run transition (WRT) speed is a crucial aspect of gait transition research, which has been conducted on treadmill as well as overground. Overground WRT-speeds were reported to be higher than on treadmill. Part of this difference could be related to the lower acceleration magnitudes on treadmill. In this study, spontaneous WRT overground was compared to WRT at a comparable acceleration on treadmill. In addition, calculation procedures correcting for movement in the lab reference frame on treadmill were implemented. As such, this study was, in contrast to previous treadmill studies, able to detect a speed jump. This speed jump was until now a typical feature of overground WRT and contributed to the higher transition speed. By incorporating horizontal movements of the COM, a speed jump was also detected on treadmill. Yet, treadmill WRT-speed (2.61 ms(-1)) remained lower than overground (2.85 ms(-1)). Nevertheless, this difference was much smaller than assumed in the literature. The remaining difference could be explained by a larger speed jump (treadmill: 0.40 ms(-1); overground: 0.51 ms(-1)), and a higher speed at the start of the transition step overground (treadmill: 2.21 ms(-1); overground: 2.34 ms(-1)). In conclusion, even when controlling for effects of acceleration and movement in the lab reference frame a treadmill influence on WRT was visible.


The Journal of Experimental Biology | 2013

Biomechanics of spontaneous overground walk-to-run transition

Veerle Segers; Kristof De Smet; Ine Van Caekenberghe; Peter Aerts; Dirk De Clercq

SUMMARY The purpose of the present study was to describe the biomechanics of spontaneous walk-to-run transitions (WRTs) in humans. After minimal instructions, 17 physically active subjects performed WRTs on an instrumented runway, enabling measurement of speed, acceleration, spatiotemporal variables, ground reaction forces and 3D kinematics. The present study describes (1) the mechanical energy fluctuations of the body centre-of-mass (BCOM) as a reflection of the whole-body dynamics and (2) the joint kinematics and kinetics. Consistent with previous research, the spatiotemporal variables showed a sudden switch from walking to running in one transition step. During this step there was a sudden increase in forward speed, the so-called speed jump (0.42 m s−1). At total body level, this was reflected in a sudden increase in energy of the BCOM (0.83±0.14 J kg−1) and an abrupt change from an out-of-phase to an in-phase organization of the kinetic and potential energy fluctuations. During the transition step a larger net propulsive impulse compared with the preceding and following steps was observed due to a decrease in the braking impulse. This suggests that the altered landing configuration (prepared during the last 40% of the preceding swing) places the body in an optimal configuration to minimize this braking impulse. We hypothesize this configuration also evokes a reflex allowing a more powerful push off, which generates enough power to complete the transition and launch the first flight phase. This powerful push-off was also reflected in the vertical ground reaction force, which suddenly changed to a running pattern.


Gait & Posture | 2011

An anatomically unbiased foot template for inter-subject plantar pressure evaluation

Todd C. Pataky; Kerstin Bosch; Tingting Mu; Noel Keijsers; Veerle Segers; Dieter Rosenbaum; John Yannis Goulermas

Pedobarographic images reflect the dynamic interaction between the plantar foot and supporting surfaces during gait and postural activities. Since intra-foot and inter-subject contact geometry are grossly similar, images may be spatially registered and directly compared. Previously arbitrary subjects have been selected as registration templates, but this can conceivably introduce anatomical bias. The purposes of this study were: (i) to compute an unbiased pedobarographic template from a large sample of healthy young adult subjects, and (ii) to demonstrate how the resulting template may be used for practical clinical and scientific analyses. Images were obtained from N=104 subjects and were registered (10,712 pairs) using (i) an optimal linear scaling technique and (ii) a nonlinear, locally affine, globally smooth technique. The nonlinear technique was found to offer biomechanically non-trivial advantages over the linear technique, most likely due to non-proportional inter-subject geometry. Specifically, the nonlinear template was able to detect morphological signals in a hallux valgus sample with greater sensitivity than the linear template. Validity of the approach was confirmed by independently assessing left and right feet, through a statistical comparison of local maximal pressures, and also through examination of random subject subsets. The current template, representative of an average healthy foot, could be a valuable resource for automated clinical and scientific analyses of foot morphology and function.

Collaboration


Dive into the Veerle Segers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Malcolm

University of Nebraska Omaha

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge