Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Veit Helm is active.

Publication


Featured researches published by Veit Helm.


Science | 2015

Dynamic thinning of glaciers on the Southern Antarctic Peninsula

Bert Wouters; Alba Martín-Español; Veit Helm; Thomas Flament; J. M. van Wessem; Stefan R. M. Ligtenberg; M. R. van den Broeke; Jonathan L. Bamber

Increasingly rapid ice sheet melting Glaciers on the Southern Antarctic Peninsula have begun losing mass at a rapid and accelerating rate. Wouters et al. documented the dramatic thinning of the land-based ice, which began in 2009, using satellite altimetry and gravity observations. The melting and weakening of ice shelves reduce their buttressing effect, allowing the glaciers to flow more quickly to the sea. Science, this issue p. 899 Glaciers on the Southern Antarctic Peninsula are disappearing at increasing rates. Growing evidence has demonstrated the importance of ice shelf buttressing on the inland grounded ice, especially if it is resting on bedrock below sea level. Much of the Southern Antarctic Peninsula satisfies this condition and also possesses a bed slope that deepens inland. Such ice sheet geometry is potentially unstable. We use satellite altimetry and gravity observations to show that a major portion of the region has, since 2009, destabilized. Ice mass loss of the marine-terminating glaciers has rapidly accelerated from close to balance in the 2000s to a sustained rate of –56 ± 8 gigatons per year, constituting a major fraction of Antarctica’s contribution to rising sea level. The widespread, simultaneous nature of the acceleration, in the absence of a persistent atmospheric forcing, points to an oceanic driving mechanism.


Annals of Glaciology | 2011

Ku-band radar penetration into snow cover on Arctic sea ice using airborne data

Rosemary Willatt; Seymour W. Laxon; Katharine Giles; Robert Cullen; Christian Haas; Veit Helm

Abstract Satellite radar altimetry provides data to monitor winter Arctic sea-ice thickness variability on interannual, basin-wide scales. When using this technique an assumption is made that the peak of the radar return originates from the snow/ice interface. This has been shown to be true in the laboratory for cold, dry snow as is the case on Arctic sea ice during winter. However, this assumption has not been tested in the field. We use data from an airborne normal-incidence Ku-band radar altimeter and in situ field measurements, collected during the CryoSat Validation Experiment (CryoVEx) Bay of Bothnia, 2006 and 2008 field campaigns, to determine the dominant scattering surface for Arctic snow-covered sea ice. In 2006, when the snow temperatures were close to freezing, the dominant scattering surface in 25% of the radar returns appeared closer to the snow/ice interface than the air/snow interface. However, in 2008, when temperatures were lower, the dominant scattering surface appeared closer to the snow/ice interface than the air/snow interface in 80% of the returns.


Geophysical Research Letters | 2015

Impact of snow accumulation on CryoSat-2 range retrievals over Arctic sea ice: An observational approach with buoy data

Robert Ricker; Stefan Hendricks; Donald K. Perovich; Veit Helm; Rüdiger Gerdes

Radar altimetry measurements of the current satellite mission CryoSat-2 show an increase of Arctic sea ice thickness in autumn 2013, compared to previous years but also related to March 2013. Such an increase over the melting season seems unlikely and needs to be investigated. Recent studies show that the influence of the snow cover is not negligible and can highly affect the CryoSat-2 range retrievals if it is assumed that the main scattering horizon is given by the snow-ice interface. Our analysis of Arctic ice mass balance buoy records and coincident CryoSat-2 data between 2012 and 2014 adds observational evidence to these findings. Linear trends of snow and ice freeboard measurements from buoys and nearby CryoSat-2 freeboard retrievals are calculated during accumulation events. We find a positive correlation between buoy snow freeboard and CryoSat-2 freeboard estimates, revealing that early snow accumulation might have caused a bias in CryoSat-2 sea ice thickness in autumn 2013.


Journal of Geophysical Research | 2016

Spatial and temporal Antarctic Ice Sheet mass trends, glacio‐isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data

Alba Martín-Español; Andrew Zammit-Mangion; Peter J. Clarke; Thomas Flament; Veit Helm; Matt A. King; Scott B. Luthcke; Elizabeth J. Petrie; Frédérique Rémy; Nana Schön; Bert Wouters; Jonathan L. Bamber

We present spatiotemporal mass balance trends for the Antarctic Ice Sheet from a statistical inversion of satellite altimetry, gravimetry, and elastic‐corrected GPS data for the period 2003–2013. Our method simultaneously determines annual trends in ice dynamics, surface mass balance anomalies, and a time‐invariant solution for glacio‐isostatic adjustment while remaining largely independent of forward models. We establish that over the period 2003–2013, Antarctica has been losing mass at a rate of −84 ± 22 Gt yr−1, with a sustained negative mean trend of dynamic imbalance of −111 ± 13 Gt yr−1. West Antarctica is the largest contributor with −112 ± 10 Gt yr−1, mainly triggered by high thinning rates of glaciers draining into the Amundsen Sea Embayment. The Antarctic Peninsula has experienced a dramatic increase in mass loss in the last decade, with a mean rate of −28 ± 7 Gt yr−1 and significantly higher values for the most recent years following the destabilization of the Southern Antarctic Peninsula around 2010. The total mass loss is partly compensated by a significant mass gain of 56 ± 18 Gt yr−1 in East Antarctica due to a positive trend of surface mass balance anomalies.


Science Advances | 2016

Geodetic measurements reveal similarities between post-Last Glacial Maximum and present-day mass loss from the Greenland ice sheet.

Shfaqat Abbas Khan; Ingo Sasgen; Michael Bevis; Tonie van Dam; Jonathan L. Bamber; John Wahr; Michael J. Willis; Kurt H. Kjær; Bert Wouters; Veit Helm; Bea M. Csatho; Kevin Fleming; Anders A. Bjørk; Andy Aschwanden; Per Knudsen; Peter Kuipers Munneke

Present destabilization of marine-based sectors in Greenland may increase sea level for centuries to come. Accurate quantification of the millennial-scale mass balance of the Greenland ice sheet (GrIS) and its contribution to global sea-level rise remain challenging because of sparse in situ observations in key regions. Glacial isostatic adjustment (GIA) is the ongoing response of the solid Earth to ice and ocean load changes occurring since the Last Glacial Maximum (LGM; ~21 thousand years ago) and may be used to constrain the GrIS deglaciation history. We use data from the Greenland Global Positioning System network to directly measure GIA and estimate basin-wide mass changes since the LGM. Unpredicted, large GIA uplift rates of +12 mm/year are found in southeast Greenland. These rates are due to low upper mantle viscosity in the region, from when Greenland passed over the Iceland hot spot about 40 million years ago. This region of concentrated soft rheology has a profound influence on reconstructing the deglaciation history of Greenland. We reevaluate the evolution of the GrIS since LGM and obtain a loss of 1.5-m sea-level equivalent from the northwest and southeast. These same sectors are dominating modern mass loss. We suggest that the present destabilization of these marine-based sectors may increase sea level for centuries to come. Our new deglaciation history and GIA uplift estimates suggest that studies that use the Gravity Recovery and Climate Experiment satellite mission to infer present-day changes in the GrIS may have erroneously corrected for GIA and underestimated the mass loss by about 20 gigatons/year.


Geophysical Research Letters | 2007

Winter accumulation in the percolation zone of Greenland measured by airborne radar altimeter

Veit Helm; Wolfgang Rack; Robert Cullen; Peter Nienow; Douglas Mair; Victoria Parry; Duncan J. Wingham

We here determine the surface elevation and the winter snow accumulation rate along a profile in the percolation zone of the Greenland Ice Sheet from data collected with ESAs Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) in spring 2004. The altimeter data show that in addition to a backscatter peak at the air-snow interface a dominant second peak occurs. This second peak appears due to the strong scattering properties of the last summer surface layer. A robust re-tracking algorithm was developed that enables the tracking of both interfaces. Utilizing this algorithm, the winter snow thickness is estimated to 1.50 +/- 0.13 m. This compares favorably with field measurements (1.43 +/- 0.04 m). The snow depth estimates in combination with snow-density measurements of 420 kg m(-3) give a mean winter mass accumulation rate of 63 cm water equivalent (w.e.) and a spatial variation of +/-6 cm w.e. Furthermore a strong correlation is found between surface gradient and accumulation rate, with higher accumulation rate in flatter areas. The approach adopted here has significant potential for remote measurements of winter snow accumulation rate across ice sheets at larger spatial scales.


IEEE Transactions on Geoscience and Remote Sensing | 2009

A Spatially Adjusted Elevation Model in Dronning Maud Land, Antarctica, Based on Differential SAR Interferometry

Reinhard Drews; Wolfgang Rack; Christine Wesche; Veit Helm

In this paper, a new digital elevation model (DEM) is derived for the ice sheet in western Dronning Maud Land, Antarctica. It is based on differential interferometric synthetic aperture radar (SAR) from the European Remote Sensing 1/2 (ERS-1/2) satellites, in combination with ICESats Geoscience Laser Altimeter System (GLAS). A DEM mosaic is compiled out of 116 scenes from the ERS-1 ice phase in 1994 and the ERS-1/2 tandem mission between 1996 and 1997 with the GLAS data acquired in 2003 that served as ground control. Using three different SAR processors, uncertainties in phase stability and baseline model, resulting in height errors of up to 20 m, are exemplified. Atmospheric influences at the same order of magnitude are demonstrated, and corresponding scenes are excluded. For validation of the DEM mosaic, covering an area of about 130 000 km2 on a 50-m grid, independent ICESat heights (2004-2007), ground-based kinematic GPS (2005), and airborne laser scanner data (ALS, 2007) are used. Excluding small areas with low phase coherence, the DEM differs in mean and standard deviation by 0.5 + / - 10.1, 1.1 + / - 6.4, and 3.1 +/ - 4.0 m from ICESat, GPS, and ALS, respectively. The excluded data points may deviate by more than 50 m. In order to suppress the spatially variable noise below a 5-m threshold, 18% of the DEM area is selectively averaged to a final product at varying horizontal spatial resolution. Apart from mountainous areas, the new DEM outperforms other currently available DEMs and may serve as a benchmark for future elevation models such as from the TanDEM-X mission to spatially monitor ice sheet elevation.


Journal of Glaciology | 2008

Characteristics and small-scale variability of GPR signals and their relation to snow accumulation in Greenland's percolation zone

Thorben Dunse; Olaf Eisen; Veit Helm; Wolfgang Rack; Daniel Steinhage; Victoria Parry

We investigate snowpack properties at a site in west-central Greenland with ground- penetrating radar (GPR), supplemented by stratigraphic records from snow pits and shallow firn cores. GPR data were collected at a validation test site for CryoSat (T05 on the ExpGlaciologiques Internationales au Groenland (EGIG) line) over a 100 m × 100 m grid and along 1 km sections at fre- quencies of 500 and 800 MHz. Several internal reflection horizons (IRHs) down to a depth of 10 m were tracked. IRHs are usually related to ice-layer clusters in vertically bounded sequences that obtain their initial characteristics near the surface during the melt season. Warm conditions in the following melt season can change these characteristics by percolating meltwater. In cold conditions, smaller melt volumes at the surface can lead to faint IRHs. The absence of simple mechanisms for internal layer origin emphasizes the need for independent dating to reliably interpret remotely sensed radar data. Our GPR-derived depth of the 2003 summer surface of 1.48 m (measured in 2004) is confirmed by snow-pit observations. The distribution of IRH depths on a 1 km scale reveals a gradient of increasing accumu- lation to the northeast of about 5 cm w.e. km −1 . We find that point measurements of accumulation in this area are representative only over several hundred metres, with uncertainties of about 15% of the spatial mean.


international geoscience and remote sensing symposium | 2010

Effects of surface roughness on sea ice freeboard retrieval with an Airborne Ku-Band SAR radar altimeter

Stefan Hendricks; Lars Stenseng; Veit Helm; Christian Haas

Results from two years of the CryoSat Validation Experiment (CryoVEx) over sea ice in the western Arctic Ocean are presented. The estimation of freeboard, the height of sea ice floating above the water level, is one the main goals of the CryoSat-2 mission of the European Space Agency (ESA) in order to investigate sea ice volume changes on an Arctic wide scale. Freeboard retrieval requires precise radar range measurements to the ice surface, therefore we investigate the penetration of the Ku-Band radar waves into the overlying snow cover as well as the effects of sub-footprint-scale surface roughness using airborne radar and laser altimeters. We find regional variable penetration of the radar signal at late spring conditions, where the difference of the radar and the reference laser range measurement never agrees with the expected snow thickness. In addition, a rough surface can lead to biases of the airborne validation dataset, since the radar overestimates the amount of open water and thin ice as well the freeboard of heavy ice deformation zones.


Journal of Geophysical Research | 2018

Comparison of Freeboard Retrieval and Ice Thickness Calculation From ALS, ASIRAS, and CryoSat‐2 in the Norwegian Arctic to Field Measurements Made During the N‐ICE2015 Expedition

Jennifer King; Henriette Skourup; Sine Munk Hvidegaard; Anja Rösel; Sebastian Gerland; Gunnar Spreen; Chris Polashenski; Veit Helm; Glen E. Liston

We present freeboard measurements from airborne laser scanner (ALS), the Airborne Synthetic Aperture and Interferometric Radar Altimeter System (ASIRAS), and CryoSat-2 SIRAL radar altimeter; ice thickness measurements from both helicopter-borne and ground-based electromagnetic-sounding; and point measurements of ice properties. This case study was carried out in April 2015 during the N-ICE2015 expedition in the area of the Arctic Ocean north of Svalbard. The region is represented by deep snow up to 1.12 m and a widespread presence of negative freeboards. The main scattering surfaces from both CryoSat-2 and ASIRAS are shown to be closer to the snow freeboard obtained by ALS than to the ice freeboard measured in situ. This case study documents the complexity of freeboard retrievals from radar altimetry. We show that even under cold (below −15°C) conditions the radar freeboard can be close to the snow freeboard on a regional scale of tens of kilometers. We derived a modal sea-ice thickness for the study region from CryoSat-2 of 3.9 m compared to measured total thickness 1.7 m, resulting in an overestimation of sea-ice thickness on the order of a factor 2. Our results also highlight the importance of year-to-year regional scale information about the depth and density of the snowpack, as this influences the sea-ice freeboard, the radar penetration, and is a key component of the hydrostatic balance equations used to convert radar freeboard to sea-ice thickness.

Collaboration


Dive into the Veit Helm's collaboration.

Top Co-Authors

Avatar

Stefan Hendricks

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Daniel Steinhage

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Reinhard Drews

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

René Forsberg

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Fritz

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Torsten Sachs

Braunschweig University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge