Veit Scheble
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Veit Scheble.
Nature Genetics | 2009
Adam J. Bass; Hideo Watanabe; Craig H. Mermel; Yu Ss; Sven Perner; Roeland Verhaak; So Young Kim; Leslie Wardwell; Pablo Tamayo; Irit Gat-Viks; Alex H. Ramos; Michele S. Woo; Barbara A. Weir; Gad Getz; Rameen Beroukhim; Michael O'Kelly; Amit Dutt; Orit Rozenblatt-Rosen; Piotr Dziunycz; Justin Komisarof; Lucian R. Chirieac; Christopher J. Lafargue; Veit Scheble; Theresia Wilbertz; Changqing Ma; Shilpa Rao; Hiroshi Nakagawa; Douglas B. Stairs; Lin Lin; Thomas J. Giordano
Lineage-survival oncogenes are activated by somatic DNA alterations in cancers arising from the cell lineages in which these genes play a role in normal development. Here we show that a peak of genomic amplification on chromosome 3q26.33 found in squamous cell carcinomas (SCCs) of the lung and esophagus contains the transcription factor gene SOX2, which is mutated in hereditary human esophageal malformations, is necessary for normal esophageal squamous development, promotes differentiation and proliferation of basal tracheal cells and cooperates in induction of pluripotent stem cells. SOX2 expression is required for proliferation and anchorage-independent growth of lung and esophageal cell lines, as shown by RNA interference experiments. Furthermore, ectopic expression of SOX2 here cooperated with FOXE1 or FGFR2 to transform immortalized tracheobronchial epithelial cells. SOX2-driven tumors show expression of markers of both squamous differentiation and pluripotency. These characteristics identify SOX2 as a lineage-survival oncogene in lung and esophageal SCC.
Modern Pathology | 2011
Theresia Wilbertz; Patrick L. Wagner; Karen Petersen; Ann-Cathrin Stiedl; Veit Scheble; Sebastian Maier; Markus Reischl; Ralf Mikut; Nasser K. Altorki; Holger Moch; Falko Fend; Annette Staebler; Adam J. Bass; Matthew Meyerson; Mark A. Rubin; Alex Soltermann; Claudia Lengerke; Sven Perner
The transcription factor SOX2 (3q26.3–q27) is a key regulator of foregut development and an embryonic stem cell factor cooperating during induction of pluripotency in terminally differentiated somatic cells. Recently, we found SOX2 to be amplified in a subset of squamous cell lung and esophageal cancers. The aim of this study was to explore the prognostic role of SOX2 in a large series of squamous cell carcinomas and adenocarcinomas of the lung. A total of 891 samples from two independent population-based cohorts were assessed by fluorescence in situ hybridization and immunohistochemistry. Furthermore, we assessed for associations between SOX2 amplification/upregulation and clinicopathological features. Similar results were found in the two cohorts. Within squamous cell carcinoma cases, 8% high-level as well as 68 and 65% low-level SOX2 amplifications occurred in the two cohorts, respectively. In adenocarcinomas, no high-level amplification was found and low-level amplification occurred in 6% of the two cohorts. Within squamous cell carcinomas of one cohort, SOX2 amplification was associated with lower tumor grade, while higher levels of SOX2 expression were related to younger age, smaller tumor size, and lower probability of angiolymphatic invasion and metastasis. High SOX2 expression levels proved to be a marker for prolonged overall survival among patients with squamous cell carcinomas. In conclusion, SOX2 amplification and upregulation are frequent events in squamous cell carcinomas of the lung and are associated with indicators of favorable prognosis.
BMC Cancer | 2011
Claudia Lengerke; Tanja Fehm; Ralf Kurth; Hans Neubauer; Veit Scheble; Friederike Müller; Friederike Schneider; Karen Petersen; Diethelm Wallwiener; Lothar Kanz; Falko Fend; Sven Perner; Petra M. Bareiss; Annette Staebler
BackgroundThe SRY-related HMG-box family of transcription factors member SOX2 has been mainly studied in embryonic stem cells as well as early foregut and neural development. More recently, SOX2 was shown to participate in reprogramming of adult somatic cells to a pluripotent stem cell state and implicated in tumorigenesis in various organs. In breast cancer, SOX2 expression was reported as a feature of basal-like tumors. In this study, we assessed SOX2 expression in 95 primary tumors of postmenopausal breast cancer patients.MethodsSamples from 95 patients diagnosed and treated at the University of Tuebingen Institute of Pathology and Womens Hospital were analyzed by immunohistochemistry for SOX2 expression in the primary tumor samples and in corresponding lymph node metastasis, where present. Furthermore, SOX2 amplification status was assessed by FISH in representative samples. In addition, eighteen fresh frozen samples were analyzed for SOX2, NANOG and OCT4 gene expression by real-time PCR.ResultsSOX2 expression was detected in 28% of invasive breast carcinoma as well as in 44% of ductal carcinoma in situ (DCIS) lesions. A score of SOX2 expression (score 0 to 3) was defined in order to distinguish SOX2 negative (score 0) from SOX2 positive samples (score 1-3) and among latter the subgroup of SOX2 high expressors (score 3 > 50% positive cells). Overall, the incidence of SOX2 expression (score 1-3) was higher than previously reported in a cohort of lymph node negative patients (28% versus 16.7%). SOX2 expression was detected across different breast cancer subtypes and did not correlate with tumor grading. However, high SOX2 expression (score 3) was associated with larger tumor size (p = 0.047) and positive lymph node status (0.018). Corresponding metastatic lymph nodes showed higher SOX2 expression and were significantly more often SOX2 positive than primary tumors (p = 0.0432).ConclusionsIn this report, we show that the embryonic stem cell factor SOX2 is expressed in a variety of early stage postmenopausal breast carcinomas and metastatic lymph nodes. Our data suggest that SOX2 plays an early role in breast carcinogenesis and high expression may promote metastatic potential. Further studies are needed to explore whether SOX2 can predict metastatic potential at an early tumor stage.
Modern Pathology | 2010
Raquel Esgueva; Sven Perner; Christopher J. Lafargue; Veit Scheble; Carsten Stephan; Michael Lein; Florian R. Fritzsche; Manfred Dietel; Glen Kristiansen; Mark A. Rubin
The majority of prostate cancers harbor recurrent gene fusions between the hormone-regulated TMPRSS2 and members of the ETS family of transcription factors, most commonly ERG. Prostate cancer with ERG rearrangements represent a distinct sub-class of tumor based on studies reporting associations with histomorphologic features, characteristic somatic copy number alterations, and gene expression signatures. This study describes the frequency of ERG rearrangement prostate cancer and three 5 prime (5′) gene fusion partners (ie, TMPRSS2, SLC45A3, and NDRG1) in a large prostatectomy cohort. ERG gene rearrangements and mechanism of rearrangement, as well as rearrangements of TMPRSS2, SLC45A3, and NDRG1, were assessed using fluorescence in situ hybridization (FISH) on prostate cancer samples from 614 patients treated using radical prostatectomy. ERG rearrangement occurred in 53% of the 540 assessable cases. TMPRSS2 and SLC45A3 were the only 5′ partner in 78% and 6% of these ERG rearranged cases, respectively. Interestingly, 11% of the ERG rearranged cases showed concurrent TMPRSS2 and SLC45A3 rearrangements. TMPRSS2 or SLC45A3 rearrangements could not be identified for 5% of the ERG rearranged cases. From these remaining cases we identified one case with NDRG1 rearrangement. We did not observe any associations with pathologic parameters or clinical outcome. This is the first study to describe the frequency of SLC45A3–ERG fusions in a large clinical cohort. Most studies have assumed that all ERG rearranged prostate cancers harbor TMPRSS2–ERG fusions. This is also the first study to report concurrent TMPRSS2 and SLC45A3 rearrangements in the same tumor focus, suggesting additional complexity that had not been previously appreciated. This study has important clinical implications for the development of diagnostic assays to detect ETS rearranged prostate cancer. Incorporation of these less common ERG rearranged prostate cancer fusion assays could further increase the sensitivity of the current PCR-based approaches.
Modern Pathology | 2010
Veit Scheble; Martin Braun; Rameen Beroukhim; Craig H. Mermel; Christian Ruiz; Theresia Wilbertz; Ann-Cathrin Stiedl; Karen Petersen; Markus Reischl; Rainer Kuefer; David Schilling; Falko Fend; Glen Kristiansen; Matthew Meyerson; Mark A. Rubin; Lukas Bubendorf; Sven Perner
Identification of specific somatic gene alterations is crucial for the insight into the development, progression, and clinical behavior of individual cancer types. The recently discovered recurrent ERG rearrangement in prostate cancer might represent a prostate cancer-specific alteration that has not been systematically assessed in tumors other than prostate cancer. Aim of this study was to assess, whether the ERG rearrangement and the distinct deletion site between TMPRSS2 and ERG, both predominantly resulting in a TMPRSS2–ERG fusion, occur in tumors other than prostate cancer. We assessed 54 different tumor types (2942 samples in total) for their ERG rearrangement status by fluorescence in situ hybridization (FISH). To calibrate, we analyzed 285 prostate cancer samples for the ERG rearrangement frequency. Additionally, we interrogated a high-resolution single nucleotide polymorphism (SNP) data set across 3131 cancer specimens (26 tumor types) for copy number alterations. None of the 54 different tumor types assessed by FISH harbored an ERG rearrangement, whereas the prostate cancer samples revealed an ERG rearrangement in 49.5% of cases. Furthermore, within the 26 tumor types assessed for copy number alterations by SNP, the distinct deletion site between TMPRSS2 and ERG (21q22.2–3) was detectable exclusively in prostate cancer. Although Ewings sarcoma and AML have known rearrangements rarely involving ERG, we hypothesize that the ERG rearrangement as well as the distinct deletion site on 21q22.2–3 between TMPRSS2 and ERG are prostate-cancer-specific genomic alterations. These observations provide further insight into the oncogenesis of prostate cancer and might be critical for the development of ERG rearrangement assessment as a clinical tool.
Human Pathology | 2011
Sebastian Maier; Theresia Wilbertz; Martin Braun; Veit Scheble; Markus Reischl; Ralf Mikut; Roopika Menon; Pavel Nikolov; Karen Petersen; Christine Beschorner; Holger Moch; Christoph Kakies; Chris Protzel; Jürgen Bauer; Alex Soltermann; Falko Fend; Annette Staebler; Claudia Lengerke; Sven Perner
Acquired chromosomal aberrations, including gene copy number alterations, are involved in the development and progression of human malignancies. SOX2, a transcription factor-coding gene located at 3q26.33, is known to be recurrently and specifically amplified in squamous cell carcinomas of the lung, the esophagus, and the oral cavity. In these organs, the SOX2 protein plays an important role in tumorigenesis and tumor survival. The aim of this study was to determine whether SOX2 amplification is also found in squamous cell carcinomas in other organs commonly affected by this tumor entity. In addition, we examined a large spectrum of lung cancer entities with neuroendocrine differentiation (ie, small cell cancers, large cell cancers, typical and atypical carcinoids) for SOX2 and TTF1 copy number gains to reveal potential molecular ties to squamous cell carcinomas or adenocarcinomas of the lung. Applying fluorescence in situ hybridization, we assessed squamous cell carcinomas of the cervix uteri (n = 47), the skin (n = 57), and the penis (n = 53) for SOX2 copy number alterations and detected amplifications in 28%, 28%, and 32% of tumors, respectively. Furthermore, we performed immunohistochemical SOX2 staining and found that SOX2 amplification is significantly associated with overexpression of the corresponding protein in squamous cell carcinomas (P < .001). Of the lung cancer entities with neuroendocrine differentiation, only small cell cancers and large cell cancers exhibited SOX2 or TTF1 amplifications at significant frequencies, indicating that at least a subset of these might be dedifferentiated forms of squamous cell carcinomas or adenocarcinomas of the lung. We conclude that SOX2 amplification and consequent SOX2 protein overexpression may represent important mechanisms of tumor initiation and progression in a considerable subset of squamous cell carcinomas.
Histopathology | 2010
Veit Scheble; Martin Braun; Theresia Wilbertz; Ann-Cathrin Stiedl; Karen Petersen; David Schilling; Markus Reischl; Gerhard Seitz; Falko Fend; Glen Kristiansen; Sven Perner
Scheble V J, Braun M, Wilbertz T, Stiedl A‐C, Petersen K, Schilling D, Reischl M, Seitz G, Fend F, Kristiansen G & Perner S (2010) Histopathology 56, 937–943 ERG rearrangement in small cell prostatic and lung cancer
Chest | 2012
Friederike Göke; Alina Franzen; Roopika Menon; Diane Goltz; Robert Kirsten; Diana Boehm; Wenzel Vogel; Antonia Göke; Veit Scheble; Joerg Ellinger; Ulrich Gerigk; Falko Fend; Patrick Wagner; Andreas Schroeck; Sven Perner
BACKGROUND We previously identified amplification of the fibroblast growth factor receptor 1 gene (FGFR1) as a potential therapeutic target for small-molecule inhibitor therapy in squamous cell lung cancer (L-SCC). Currently, clinical phase I trials are underway to examine whether patients with FGFR1-amplified L-SCC benefit from a targeted therapy approach using small-molecule inhibitors. Because most patients with lung cancer present with metastatic disease, we investigated whether lymph node metastases in L-SCC share the FGFR1 amplification status of their corresponding primary tumor. METHODS The study cohort consisted of 72 patients with L-SCC, 39 with regional lymph node metastases. Tissue microarrays were constructed from formalin-fixed, paraffin-embedded tissue of the primary tumors and, where present, of the corresponding lymph node metastasis. A biotin-labeled target probe spanning the FGFR1 locus (8p11.22-23) was used to determine the FGFR1 amplification status by fluorescence in situ hybridization. RESULTS FGFR1 amplification was detected in 16% (12 of 72) of all primary L-SCCs. In metastatic tumors, 18% (seven of 39) of the lymph node metastases displayed FGFR1 amplification with an exact correlation of FGFR1 amplification status between tumor and metastatic tissue. CONCLUSIONS FGFR1 amplification is a common genetic event occurring at a frequency of 16% in L-SCCs. Moreover, lymph node metastases derived from FGFR1-amplified L-SCCs also exhibit FGFR1 amplification. Therefore, we suggest that the FGFR1 amplification is a clonal event in tumor progression. Beyond this biologically relevant observation, the findings carry potential therapeutic implications in that small-molecule inhibitors may be applicable to the treatment of a subset of patients with metastatic L-SCC.
Histopathology | 2011
Martin Braun; Veit Scheble; Roopika Menon; Gregor Scharf; Theresia Wilbertz; Karen Petersen; Christine Beschorner; Markus Reischl; Rainer Kuefer; David Schilling; Arnulf Stenzl; Glen Kristiansen; Mark A. Rubin; Falko Fend; Sven Perner
Braun M, Scheble V J, Menon R, Scharf G, Wilbertz T, Petersen K, Beschorner C, Reischl M, Kuefer R, Schilling D, Stenzl A, Kristiansen G, Rubin M A, Fend F & Perner S (2011) Histopathology 58, 1028–1036 Relevance of cohort design for studying the frequency of the ERG rearrangement in prostate cancer
Lung Cancer | 2011
Patrick L. Wagner; Ann-Cathrin Stiedl; Theresia Wilbertz; Karen Petersen; Veit Scheble; Roopika Menon; Markus Reischl; Ralf Mikut; Mark A. Rubin; Falko Fend; Holger Moch; Alex Soltermann; Walter Weder; Nasser K. Altorki; Sven Perner
BACKGROUND Characterization of the non-small cell lung cancer (NSCLC) genome has suggested that KRAS amplification is one of the commonest molecular abnormalities in NSCLC. However, the prevalence and clinicopathologic significance of KRAS amplification, and its relationship with KRAS activating mutations have not been well-defined. The purpose of this study was to establish the prevalence of KRAS amplification in two separate, large NSCLC cohorts, to define the clinicopathologic features of KRAS-amplified NSCLC in a single uniformly treated cohort, and to investigate the interplay between KRAS amplification and KRAS mutation. METHODS Fluorescence in situ hybridization was utilized to detect KRAS amplification on tissue microarrays constructed from a Swiss cohort of 538 NSCLCs and a series of 402 patients with NSCLC treated in a single institution in New York. DNA sequencing to detect KRAS codon 12 activating mutations was performed on a subset of tumors. Amplification and mutation status were compared with patient baseline characteristics, tumor characteristics, and overall- and disease-free survival. RESULTS The prevalence of KRAS amplification was 13.7% in the Swiss cohort and 15.1% in the New York cohort. Among adenocarcinomas, KRAS amplification was associated with larger (mean size 2.8±1.8 cm vs. 2.1±1.3 cm, p=0.003), less well-differentiated tumors (18% vs. 42%, p=0.004) that were more likely to be invasive (95% vs. 77%, p=0.004) and to exhibit angiolymphatic invasion (24% vs. 12%, p=0.04). These differences were statistically significant within the subset of adenocarcinomas harboring activating KRAS mutations, suggesting a synergistic relationship between amplification and mutation. No significant association between KRAS amplification and nodal metastasis or survival was seen. CONCLUSIONS KRAS amplification is a common molecular alteration in NSCLC, characterizing ∼15% of tumors. This alteration is associated with indicators of local aggressiveness, and may act synergistically with KRAS mutations to promote tumor progression.