Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Veli Isomaa is active.

Publication


Featured researches published by Veli Isomaa.


FEBS Letters | 1988

Complete amino acid sequence of human placental 17β‐hydroxysteroid dehydrogenase deduced from cDNA

Hellevi Peltoketo; Veli Isomaa; O. Mäentausta; Reijo Vihko

CDNA clones for 17β‐hydroxysteroid dehydrogenase (17‐HSD; EC 1.1.1.62) were isolated from a placental λgt11 expression library using polyclonal antibodies against placental 17‐HSD. The largest cDNA contained 1325 nucleotides, consisting of a short 5′‐noncoding segment, a coding segment of 987 nucleotides terminated by a TAA codon, and a 329 nucleotide long 3′‐noncoding segment. The open reading frame encoded a polypeptide of 327 amino acid residues with a predicted M r of 34853. The amino acid sequence of 23 N‐terminal amino acids determined from purified 17‐HSD agreed with the sequence deduced from cDNA. The deduced amino acid sequence also contained two peptides previously characterized from the proposed catalytic area of placental 17‐HSD.


Biochemical and Biophysical Research Communications | 2003

Production, purification, and functional analysis of recombinant human and mouse 17β-hydroxysteroid dehydrogenase type 7 ☆

S. Törn; Pasi Nokelainen; Riitta Kurkela; Anitta Pulkka; Marta Menjivar; Sikha Ghosh; Miguel Coca-Prados; Hellevi Peltoketo; Veli Isomaa; Pirkko Vihko

17beta-Hydroxysteroid dehydrogenases (17HSDs) have a central role in the regulation of the biological activity of sex steroid hormones. There is increasing evidence that in addition to their importance in gonads, these hormones also have substantial metabolic roles in a variety of peripheral tissues. In the present study, the cDNA of human 17HSD type 7 was cloned. In silico, the gene corresponding to the cDNA was localized on chromosome 1q23, close to the locus of hereditary prostate cancer 1 (HPC1) (1q24-25) and primary open-angle glaucoma (GLC1A) (1q23-25). Further, a pseudogene was found on chromosome 1q44, close to the locus of predisposing for early-onset prostate cancer (PCaP) (1q42.2-43). Both human (h17HSD7) and mouse 17HSD type 7 (m17HSD7) were for the first time produced as recombinant proteins and purified for functional analyses. Further, kinetic parameters and specific activities were described. h17HSD7 converted estrone (E1) to a more potent estrogen, estradiol (E2), and dihydrotestosterone (DHT), a potent androgen, to an estrogenic metabolite 5alpha-androstane-3beta, 17beta-diol (3betaA-diol) equally, thereby catalyzing the reduction of the keto group in either 17- or 3-position of the substrate. Minor 3betaHSD-like activity towards progesterone (P) and 20-hydroxyprogesterone (20-OH-P), leading to the inactivation of P by h17HSD7, was also detected. m17HSD7 efficiently catalyzed the reaction from E1 to E2 and moderately converted DHT to an inactive metabolite 5alpha-androstane-3alpha,17beta-diol (3alphaA-diol) and to an even lesser degree 3betaA-diol. The mouse enzyme did not metabolize P or 20-OH-P. The expression of 17HSD type 7 was observed widely in human tissues, most distinctly in adrenal gland, liver, lung, and thymus. Based on the enzymatic characteristics and tissue distribution, we conclude that h17HSD7 might be an intracrine regulator of steroid metabolism, fortifying the estrogenic milieu in peripheral tissues.


Cancer Research | 2004

17β-Hydroxysteroid Dehydrogenase Type 1 Is an Independent Prognostic Marker in Breast Cancer

Olayiwola O. Oduwole; Yan Li; Veli Isomaa; Anne Mäntyniemi; Anitta E. Pulkka; Ylermi Soini; Pirkko Vihko

Estrogens have an important role in the development and progression of breast cancer. 17β-Hydroxysteroid dehydrogenase type 1 (17HSD1), type 2 (17HSD2), and type 5 (17HSD5) are associated with sex steroid metabolism in normal and cancerous breast tissue. The mRNA expressions of the 17HSD1, 17HSD2, and 17HSD5 enzymes were analyzed in 794 breast carcinoma specimens by using tissue microarrays and normal histologic sections. The results were correlated with the estrogen receptor α (ER-α) and β (ER-β), progesterone receptor, Ki67, and c-erbB-2 expressions analyzed by immunohistochemical techniques and with the Tumor-Node-Metastasis classification, tumor grade, disease-free interval, and survival of the patients. Signals for 17HSD1 mRNA were detected in 16%, 17HSD2 in 25%, and 17HSD5 in 65% of the breast cancer specimens. No association between the 17HSD1, 17HSD2, and 17HSD5 expressions was detected. A significant association was observed between ER-α and ER-β (P = 0.02; odds ratio, 1.96) expressions. There was also a significant inverse association between ER-α and 17HSD1 (P = 0.04; odds ratio, 0.53), as well as ER-α and 17HSD5 (P = 0.001; odds ratio, 0.35). Patients with tumors expressing 17HSD1 mRNA or protein had significantly shorter overall and disease-free survival than the other patients (P = 0.0010 and 0.0134, log rank). The expression of 17HSD5 was significantly higher in breast tumor specimens than in normal tissue (P = 0.033; odds ratio, 5.56). The group with 17HSD5 overexpression had a worse prognosis than the other patients (P = 0.0146). ER-α also associated with survival (P = 0.045). Cox multivariate analyses showed that 17HSD1 mRNA, tumor size, and ER-α had independent prognostic significance.


The Journal of Steroid Biochemistry and Molecular Biology | 1995

Role of 17β-hydroxysteroid dehydrogenase type 1 in endocrine and intracrine estradiol biosynthesis

Matti Poutanen; Veli Isomaa; Hellevi Peltoketo; Reijo Vihko

Enzymes with 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) activity catalyse reactions between the low-active female sex steroid, estrone, and the more potent estradiol, for example. 17 beta-HSD activity is essential for glandular (endocrine) sex hormone biosynthesis, but it is also present in several extra-gonadal tissues. Hence, 17 beta-HSD enzymes also take part in local (intracrine) estradiol production in the target tissues of estrogen action. Four distinct 17 beta-HSD isozymes have been characterized so far, and the data strongly suggests that different 17 beta-HSD isozymes have distinct roles in endocrine and intracrine metabolism of sex steroids. Current data suggest that 17 beta-HSD type 1 is the principal isoenzyme involved in glandular estradiol production both in humans and rodents. During ovarian follicular development and luteinization, rat 17 beta-HSD type 1 is regulated by gonadotropins, and the effects of gonadotropins are modulated by steroid hormones and paracrine growth factors. Human 17 beta-HSD type 1 favors the reduction reaction, thereby converting estrone to estradiol both in vitro and in cultured cells. Hence, the enzymatic properties of the enzyme are also in line with its suggested role in estradiol biosynthesis. Interestingly, 17 beta-HSD type 1 is also expressed in certain target tissues of estrogen action such as normal and malignant human breast and endometrium. Hence, 17 beta-HSD type 1 could be one of the factors leading to a relatively high tissue/plasma ratio of estradiol in breast cancer tissues of postmenopausal women. We conclude that 17 beta-HSD type 1 has a central role in regulating the circulating estradiol concentration as well as its local production in estrogen target cells.


The Journal of Steroid Biochemistry and Molecular Biology | 2004

Sex steroid hormone metabolism and prostate cancer

P. Soronen; M. Laiti; S. Törn; P. Härkönen; L. Patrikainen; Yan Li; Anitta Pulkka; Riitta Kurkela; Annakaisa Herrala; H. Kaija; Veli Isomaa; Pirkko Vihko

The growth and function of the prostate is dependent on androgens. The two predominant androgens are testosterone, which is formed in the testis from androstenedione and 5alpha-dihydrotestosterone, which is formed from testosterone by 5alpha-reductases and is the most active androgen in the prostate. Prostate cancer is one of the most common cancers among men and androgens are involved in controlling the growth of androgen-sensitive malignant prostatic cells. The endocrine therapy used to treat prostate cancer aims to eliminate androgenic activity from the prostatic tissue. Most prostate cancers are initially responsive to androgen withdrawal but become later refractory to the therapy and begin to grow androgen-independently. Using LNCaP prostate cancer cell line we have developed a cell model to study the progression of prostate cancer. In the model androgen-sensitive LNCaP cells are transformed in culture conditions into more aggressive, androgen-independent cells. The model was used to study androgen and estrogen metabolism during the transformation process. Our results indicate that substantial changes in androgen and estrogen metabolism occur in the cells during the process. A remarkable decrease in the oxidative 17beta-hydroxysteroid dehydrogenase activity was seen whereas the reductive activity seemed to increase. The changes suggest that during transformation estrogen influence is increasing in the cells. This is supported by the cDNA microarray screening results which showed over-expression of several genes up-regulated by estrogens in the LNCaP cells line representing progressive prostate cancer. Since local steroid metabolism controls the bioavailability of active steroid hormones in the prostate, the variations in steroid-metabolizing enzymes during cancer progression may be crucial in the regulation of the growth and function of the organ.


Biochimica et Biophysica Acta | 1979

Regulation of cytosol and nuclear progesterone receptors in rabbit uterus by estrogen, antiestrogen and progesterone administration

Veli Isomaa; H. Isotalo; Mauri Orava; Olli A. Jänne

A synthetic progestin, 16 alpha-ethyl-21-hydroxy-19-nor-4-pregnene-3,20-dione (ORG 2058), was utilized to measure progesterone receptors from the rabbit uterus. This steroid has a high affinity for both cytosol and nuclear receptors, with KD values of 1.2 nM (at 0--4 degrees C) and 2.3 nM (at 15 degrees C), respectively. Administration of estradiol-17 beta or a non-steroidal antiestrogen, tamoxifen, for 5 days to estrous rabbits led to a progressive rise in the cytosol receptor levels: from 34,000 to 120,000 (estradiol-17 beta) and 80,000 (tamoxifen) receptors/cell, without any major influence on the nuclear receptor content. A single intravenous injection of progesterone (5 mg/kg) elicited a 3-fold increase in the mean nuclear receptor content at 30 min after injection (from 18,000 to 48,000 receptors/nucleus). Nuclear receptor accumulation was short-lived and returned to control levels within 4 h after treatment. A second dose of progesterone given 24 h later doubled the nuclear receptor level (from 18,000 to 35,000 receptors/nucleus). The concomitant decline in the cytosol receptor content was twice that accounted for by the nuclear receptor accumulation (70,000 vs. 30,000, and 40,000 vs. 17,000 receptors/cell, after the first and second progesterone injection, respectively). Following progesterone administration, the cytosol receptor level reached a nadir by 30 min, exhibited minimal replenishment within the ensuing 24 h, and remained at approx. 50% of the pretreatment values. After a single dose or two consecutive doses of progesterone, total uterine progesterone receptor content declined to about 60% of the level prior to each dose, a nadir being reached at 2 h after treatment.


Breast Cancer Research and Treatment | 1999

17β-hydroxysteroid dehydrogenases in normal human mammary epithelial cells and breast tissue

Minna Miettinen; Mika Mustonen; Matti Poutanen; Veli Isomaa; Marie Wickman; Gunnar Söderqvist; Reijo Vihko; Pirkko Vihko

Abstract17β‐hydroxysteroid dehydrogenase activity represents a group of several isoenzymes (17HSDs) that catalyze the interconversion between highly active 17β‐hydroxy‐ and low activity 17‐ketosteroids and thereby regulate the biological activity of sex steroids. The present study was carried out to characterize the expression of 17HSD isoenzymes in human mammary epithelial cells and breast tissue. In normal breast tissues 17HSD types 1 and 2 mRNAs were both evenly expressed in glandular epithelium. In two human mammary epithelial cell lines, mRNAs for 17HSD types 1, 2 and 4 were detected. In enzyme activity measurements only oxidative 17HSD activity, corresponding to either type 2 or type 4 enzyme, was present. The role of 17HSD type 4 in estrogen metabolism was further investigated, using several cell lines originating from various tissues. No correlation between the presence of 17HSD type 4 mRNA and 17HSD activity in different cultured cell lines was detected. Instead, oxidative 17HSD activity appeared in cell lines where 17HSD type 2 was expressed and reductive 17HSD activity was present in cells expressing 17HSD type 1. These data strongly suggest that in mammary epithelial cell lines the oxidative activity is due to type 2 17HSD and that oxidation of 17β‐hydroxysteroids is not the primary activity of the 17HSD type 4 enzyme.


Molecular and Cellular Endocrinology | 2004

17β-hydroxysteroid dehydrogenases: their role in pathophysiology

Pirkko Vihko; P. Härkönen; P. Soronen; S. Törn; Annakaisa Herrala; Riitta Kurkela; Anitta Pulkka; Olayiwola O. Oduwole; Veli Isomaa

Abstract 17β-Hydroxysteroid dehydrogenases (17HSDs) regulate the biological activity of sex steroid hormones in a variety of tissues by catalyzing the interconversions between highly active steroid hormones, e.g. estradiol and testosterone, and corresponding less active hormones, estrone and androstenedione. Epidemiological and endocrine evidence indicates that estrogens play a role in the etiology of breast cancer, while androgens are involved in mechanisms controlling the growth of normal and malignant prostatic cells. Using LNCaP prostate cancer cell lines, we have developed a cell model to study the progression of prostate cancer. In the model LNCaP cells are transformed in culture condition into more aggressive cells. Our data suggest that substantial changes in androgen and estrogen metabolism occur in the cells, leading to increased production of active estrogens during the process. In breast cancer, the reductive 17HSD type 1 activity is predominant in malignant cells, while the oxidative 17HSD type 2 mainly seems to be present in non-malignant breast epithelial cells. Deprivation of an estrogen response by using specific 17HSD type 1 inhibitors is a tempting approach in treating estrogen-dependent breast cancer. Our recent studies demonstrate that in addition to sex hormone target tissues, estrogens may be important in the development of cancer in some other tissues previously not considered to be estrogen target tissues, such as the gastrointestinal tract.


Human Genetics | 1994

Human familial and sporadic breast cancer : analysis of the coding regions of the 17β-hydroxysteroid dehydrogenase 2 gene (EDH17B2) using a single-strand conformation polymorphism assay

Arto Mannermaa; Hellevi Peltoketo; Robert Winqvist; Bruce A.J. Ponder; Heikki Kiviniemi; Douglas F. Easton; Matti Poutanen; Veli Isomaa; Reijo Vihko

Abstract17β-Hydroxysteroid dehydrogenase (17HSD) is one of the key enzymes in estrogen metabolism, catalyzing the reversible reaction between estradiol and the less active estrogen, estrone. The gene encoding this enzyme, EDH17B2, has been mapped to chromosome 17, region q12–q21, in the vicinity of BRCA1, an as yet unidentified gene that appears to be involved in familial breast cancer and in familial ovarian cancer. The possibility that EDH17B2 gene is the same as BRCA1 was tested by screening for mutations in the coding regions of EDH17B2, using a polymerase chain reaction/single-strand conformation polymorphism method. An A→G transition creating a new BstUI site at exon 6 was the only frequent sequence alteration found in the coding region of the gene. This mutation also led to an amino acid substitution of serine to glycine at position 312 (312S→312G) in the 17HSD protein. Since the nucleotide change was detected both in specimens from patients with familial or sporadic cancer and in control samples, and at similar rates, this mutation appears to be of a polymorphic nature. In addition, a rare polymorphism located at intron 5 was detected. This C→T substitution creates a BbvI site and is not thought to have any effect on 17HSD activity. The results indicate that there are no major alterations in the coding areas of EDH17B2 and thus studies testing the hypothesis that EDH17B2 may be the same as BRCA1 should be extended to the promoter and regulatory elements of EDH17B2.


The Journal of Steroid Biochemistry and Molecular Biology | 2005

Enzymes as modulators in malignant transformation

Pirkko Vihko; Annakaisa Herrala; P. Härkönen; Veli Isomaa; Helena Kaija; Riitta Kurkela; Yan Li; L. Patrikainen; Anitta Pulkka; P. Soronen; S. Törn

Experimental data suggest that sex steroids have a role in the development of breast and prostate cancers. The biological activity of sex steroid hormones in target tissues is regulated by several enzymes, including 17beta-hydroxysteroid dehydrogenases (17HSD). Changes in the expression patterns of these enzymes may significantly modulate the intracellular steroid content and play a pathophysiological role in malignant transformation. To further clarify the role of 17HSDs in breast cancer, we analyzed the mRNA expressions of the 17HSD type 1, 2, and 5 enzymes in 794 breast carcinoma specimens. Both 17HSD type 1 and 2 mRNAs were detected in normal breast tissue from premenopausal women but not in specimens from postmenopausal women. Of the breast cancer specimens, 16% showed signals for 17HSD type 1 mRNA, 25% for type 2, and 65% for type 5. No association between the 17HSD type 1, 2, and 5 expressions was detected. The patients with tumors expressing 17HSD type 1 mRNA or protein had significantly shorter overall and disease-free survival than the other patients. The expression of 17HSD type 5 was significantly higher in breast tumor specimens than in normal tissue. The group with 17HSD type 5 overexpression had a worse prognosis than the other patients. Cox multivariate analyses showed that 17HSD type 1 mRNA, tumor size, and ERalpha had independent prognostic significance. Using an LNCaP prostate cancer cell line, we developed a cell model to study the progression of prostate cancer. In this model, androgen-sensitive LNCaP cells are transformed in culture conditions into more aggressive, androgen-independent cells. The model was used to study androgen and estrogen metabolism during the transformation process. Our results indicate that substantial changes in androgen and estrogen metabolism occur in the cells during the process. A remarkable decrease in oxidative 17HSD activity was seen, whereas reductive activity seemed to increase. Since local steroid metabolism controls the bioavailability of active steroid hormones of target tissues, the variations in steroid-metabolizing enzymes during cancer progression may be crucial in the regulation of the growth and function of organs.

Collaboration


Dive into the Veli Isomaa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge