Velia Cardin
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Velia Cardin.
Cerebral Cortex | 2010
Velia Cardin; Andrew T. Smith
The analysis and representation of visual cues to self-motion (egomotion) is primarily associated with cortical areas MST, VIP, and (recently) cingulate sulcus visual area (CSv). Various other areas, including visual areas V6 and V6A, and vestibular areas parietoinsular vestibular cortex (PIVC), putative area 2v (p2v), and 3aNv, are also potentially suited to processing egomotion (in some cases based on multisensory cues), but it is not known whether they are in fact involved in this process. In a functional magnetic resonance imaging (fMRI) experiment, we presented human participants with 2 types of random dot kinematograms. Both contained coherent motion but one simulated egomotion while the other did not. An area in the parieto-occipital sulcus that may correspond to V6, PIVC, and p2v were all differentially responsive to egomotion-compatible visual stimuli, suggesting that they may be involved in encoding egomotion. More generally, we show that the use of such stimuli provides a simple and reliable fMRI localizer for human PIVC and p2v, which hitherto required galvanic or caloric stimulation to be identified.
Neurochemical Research | 2000
Herminia Pasantes-Morales; Velia Cardin; Karina Tuz
Brain cell swelling compromises neuronal function and survival by the risk of generation of ischemia episodes as compression of small vessels occurs due to the limits to expansion imposed by the rigid skull. External osmolarity reductions or intracellular accumulation of osmotically active solutes result in cell swelling which can be counteracted by extrusion of osmolytes through specific efflux pathways. Characterization of these pathways has received considerable attention, and there is now interest in the understanding of the intracellular signaling events involved in their activation and regulation. Calcium and calmodulin, phosphoinositides and cAMP may act as second messengers, carrying the information about a cell volume change into signaling enzymes. Small GTPases, protein tyrosine kinases and phospholipases, also appear to be part of the signaling cascades ultimately modulating the osmolyte efflux pathways. This review focus on i) the influence of hyposmotic and isosmotic swelling on these signaling events and molecules and ii) the effects of manipulating their function on the osmolyte fluxes, particularly K+, CI− and amino acids, and on the consequent efficiency of cell volume adjustment.
Nature Communications | 2013
Velia Cardin; Eleni Orfanidou; Jerker Rönnberg; Cheryl M. Capek; Mary Rudner; Bencie Woll
Disentangling the effects of sensory and cognitive factors on neural reorganization is fundamental for establishing the relationship between plasticity and functional specialization. Auditory deprivation in humans provides a unique insight into this problem, because the origin of the anatomical and functional changes observed in deaf individuals is not only sensory, but also cognitive, owing to the implementation of visual communication strategies such as sign language and speechreading. Here, we describe a functional magnetic resonance imaging study of individuals with different auditory deprivation and sign language experience. We find that sensory and cognitive experience cause plasticity in anatomically and functionally distinguishable substrates. This suggests that after plastic reorganization, cortical regions adapt to process a different type of input signal, but preserve the nature of the computation they perform, both at a sensory and cognitive level.
Journal of Neurophysiology | 2011
Velia Cardin; Andrew T. Smith
The principal visual cue to self-motion (egomotion) is optic flow, which is specified in terms of local 2D velocities in the retinal image without reference to depth cues. However, in general, points near the center of expansion of natural flow fields are distant, whereas those in the periphery are closer, creating gradients of horizontal binocular disparity. To assess whether the brain combines disparity gradients with optic flow when encoding egomotion, stereoscopic gradients were applied to expanding dot patterns presented to observers during functional MRI scanning. The gradients were radially symmetrical, disparity changing as a function of eccentricity. The depth cues were either consistent with egomotion (peripheral dots perceived as near and central dots perceived as far) or inconsistent (the reverse gradient, central dots near, peripheral dots far). The BOLD activity generated by these stimuli was compared in a range of predefined visual regions in 13 participants with good stereoacuity. Visual area V6, in the parieto-occipital sulcus, showed a unique pattern of results, responding well to all optic flow patterns but much more strongly when they were paired with consistent rather than inconsistent or zero-disparity gradients. Of the other areas examined, a region of the precuneus and parietoinsular vestibular cortex also differentiate between consistent and inconsistent gradients, but with weak or suppressive responses. V3A, V7, MT, and ventral intraparietal area responded more strongly in the presence of a depth gradient but were indifferent to its depth-flow congruence. The results suggest that depth and flow cues are integrated in V6 to improve estimation of egomotion.
Cerebral Cortex | 2011
Velia Cardin; K. J. Friston; Semir Zeki
Perception entails interactions between activated brain visual areas and the records of previous sensations, allowing for processes like figure–ground segregation and object recognition. The aim of this study was to characterize top-down effects that originate in the visual cortex and that are involved in the generation and perception of form. We performed a functional magnetic resonance imaging experiment, where subjects viewed 3 groups of stimuli comprising oriented lines with different levels of recognizable high-order structure (none, collinearity, and meaning). Our results showed that recognizable stimuli cause larger activations in anterior visual and frontal areas. In contrast, when stimuli are random or unrecognizable, activations are greater in posterior visual areas, following a hierarchical organization where areas V1/V2 were less active with “collinearity” and the middle occipital cortex was less active with “meaning.” An effective connectivity analysis using dynamic causal modeling showed that high-order visual form engages higher visual areas that generate top-down signals, from multiple levels of the visual hierarchy. These results are consistent with a model in which if a stimulus has recognizable attributes, such as collinearity and meaning, the areas specialized for processing these attributes send top-down messages to the lower levels to facilitate more efficient encoding of visual form.
Neuroscience & Biobehavioral Reviews | 2013
C.R. Lyness; Bencie Woll; Ruth Campbell; Velia Cardin
Highlights • Children with CI perform poorer than their hearing peers in educational settings.• CI sensitive periods are influenced by language and auditory deprivation.• Reorganisation of auditory cortex is an inevitable consequence of deafness.• Visual language does not influence crossmodal plasticity.• Early language deprivation has deleterious consequences for language learning.
Glia | 2003
Velia Cardin; Ruth Lezama; M.Eugenia Torres-Márquez; Herminia Pasantes-Morales
Hyposmolarity (−30%) in cultured cerebellar astrocytes raised cytosolic Ca2+ concentration ([Ca2+]i) from 160 to 400 nM and activated the osmosensitive taurine release (OTR) pathway. Although OTR is essentially [Ca2+]i‐independent, further increase in [Ca2+]i by ionomycin strongly enhanced OTR, with a more robust effect at low and mild osmolarity reductions. Ionomycin did not affect isosmotic taurine efflux. OTR was decreased by tyrphostin A25 and increased by ortho‐vanadate, suggesting a modulation by tyrosine kinase or phosphorylation state. Inhibition of phosphatidylinositol‐3‐kinase activity by wortmannin markedly decreased OTR and the ionomycin increase. Conversely, OTR and the ionomycin effect were independent of ERK1/ERK2 activation. OTR and its potentiation by ionomycin differed in their sensitivity to CaM and CaMK blockers and in the requirement of an intact cytoskeleton for the ionomycin effect, but not for normal OTR. Changes in the actin cytoskeleton organization elicited by hyposmolarity were not observed in ionomycin‐treated cells, which may permit the operation of CaM/CaMK pathways involved in the OTR potentiation by [Ca2+]i rise. OTR potentiation by [Ca2+]i requires the previous or simultaneous activation/operation of the taurine release mechanism and is not modifying its set point, but rather increasing the effectiveness of the pathway, resulting in a more efficient volume regulation. This may have a beneficial effect in pathological situations with concurrent swelling and [Ca2+]i elevation in astrocytes.
Journal of Neuroscience Research | 1999
Velia Cardin; C. Peña-Segura; Herminia Pasantes-Morales
A decrease in intracellular ionic strength appears involved in the activation of swelling‐elicited 3H‐taurine efflux in cortical cultured astrocytes. Hyposmotic (50%) or isosmotic urea‐induced swelling leading to a decrease of intracellular ionic strength, activated 3H‐taurine efflux from a rate constant of about 0.008 min‐1 to 0.33 min‐1 (hyposmotic) and 0.59 min‐1 (urea). This efflux rate was markedly lower (maximal 0.03 min‐1) in isosmotic swelling caused by K+ accumulation, where there is no decrease in ionic strength, or in cold (10°C) hyposmotic medium (maximal 0.18 min‐1), where swelling is reduced and consequently intracellular ionic strength is less affected. Also, astrocytes pretreated with hyperosmotic medium, which recover cell volume by ion accumulation, did not release 3H‐taurine when they swelled by switching to isosmotic medium, but when volume was recovered by accumulation of urea, taurine release was restored. These results point to a key role of ionic strength in the activation of osmosensitive 3H‐taurine efflux. In contrast, its inactivation was independent of the change in ionic strength but appears related to the reduction in cell volume after swelling, since despite the extent or direction of the change in ionic strength, the 3H‐taurine efflux did not inactivate in isosmotic KCl‐elicited swelling when cell volume did not recover nor in hyposmotic swelling when RVD was impaired by replacing NaCl in the medium by permeant osmolytes. J. Neurosci. Res. 56:659–667, 1999.
Journal of Neurophysiology | 2012
Velia Cardin; Lara Hemsworth; Andrew T. Smith
The extraction of optic flow cues is fundamental for successful locomotion. During forward motion, the focus of expansion (FoE), in conjunction with knowledge of eye position, indicates the direction in which the individual is heading. Therefore, it is expected that cortical brain regions that are involved in the estimation of heading will be sensitive to this feature. To characterize cortical sensitivity to the location of the FoE or, more generally, the center of flow (CoF) during visually simulated self-motion, we carried out a functional MRI (fMRI) adaptation experiment in several human visual cortical areas that are thought to be sensitive to optic flow parameters, namely, V3A, V6, MT/V5, and MST. In each trial, two optic flow patterns were sequentially presented, with the CoF located in either the same or different positions. With an adaptation design, an area sensitive to heading direction should respond more strongly to a pair of stimuli with different CoFs than to stimuli with the same CoF. Our results show such release from adaptation in areas MT/V5 and MST, and to a lesser extent V3A, suggesting the involvement of these areas in the processing of heading direction. The effect could not be explained either by differences in local motion or by attention capture. It was not observed to a significant extent in area V6 or in control area V1. The different patterns of responses observed in MST and V6, areas that are both involved in the processing of egomotion in macaques and humans, suggest distinct roles in the processing of visual cues for self-motion.
Frontiers in Psychology | 2013
Josefine Andin; Eleni Orfanidou; Velia Cardin; Emil Holmer; Cheryl M. Capek; Bencie Woll; Jerker Rönnberg; Mary Rudner
Similar working memory (WM) for lexical items has been demonstrated for signers and non-signers while short-term memory (STM) is regularly poorer in deaf than hearing individuals. In the present study, we investigated digit-based WM and STM in Swedish and British deaf signers and hearing non-signers. To maintain good experimental control we used printed stimuli throughout and held response mode constant across groups. We showed that deaf signers have similar digit-based WM performance, despite shorter digit spans, compared to well-matched hearing non-signers. We found no difference between signers and non-signers on STM span for letters chosen to minimize phonological similarity or in the effects of recall direction. This set of findings indicates that similar WM for signers and non-signers can be generalized from lexical items to digits and suggests that poorer STM in deaf signers compared to hearing non-signers may be due to differences in phonological similarity across the language modalities of sign and speech.