Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vendula Valášková is active.

Publication


Featured researches published by Vendula Valášková.


Fems Microbiology Reviews | 2008

Degradation of cellulose by basidiomycetous fungi

Petr Baldrian; Vendula Valášková

Cellulose is the main polymeric component of the plant cell wall, the most abundant polysaccharide on Earth, and an important renewable resource. Basidiomycetous fungi belong to its most potent degraders because many species grow on dead wood or litter, in environment rich in cellulose. Fungal cellulolytic systems differ from the complex cellulolytic systems of bacteria. For the degradation of cellulose, basidiomycetes utilize a set of hydrolytic enzymes typically composed of endoglucanase, cellobiohydrolase and beta-glucosidase. In some species, the absence of cellobiohydrolase is substituted by the production of processive endoglucanases combining the properties of both of these enzymes. In addition, systems producing hydroxyl radicals based on cellobiose dehydrogenase, quinone redox cycling or glycopeptide-based Fenton reaction are involved in the degradation of several plant cell wall components, including cellulose. The complete cellulolytic complex used by a single fungal species is typically composed of more than one of the above mechanisms that contribute to the utilization of cellulose as a source of carbon or energy or degrade it to ensure fast substrate colonization. The efficiency and regulation of cellulose degradation differs among wood-rotting, litter-decomposing, mycorrhizal or plant pathogenic fungi and yeasts due to the different roles of cellulose degradation in the physiology and ecology of the individual groups.


The ISME Journal | 2012

Active and total microbial communities in forest soil are largely different and highly stratified during decomposition

Petr Baldrian; Miroslav Kolařík; Martina Štursová; Jan Kopecký; Vendula Valášková; Tomáš Větrovský; Lucia Žifčáková; Jaroslav Šnajdr; Jakub Ridl; Čestmír Vlček; Jana Voříšková

Soils of coniferous forest ecosystems are important for the global carbon cycle, and the identification of active microbial decomposers is essential for understanding organic matter transformation in these ecosystems. By the independent analysis of DNA and RNA, whole communities of bacteria and fungi and its active members were compared in topsoil of a Picea abies forest during a period of organic matter decomposition. Fungi quantitatively dominate the microbial community in the litter horizon, while the organic horizon shows comparable amount of fungal and bacterial biomasses. Active microbial populations obtained by RNA analysis exhibit similar diversity as DNA-derived populations, but significantly differ in the composition of microbial taxa. Several highly active taxa, especially fungal ones, show low abundance or even absence in the DNA pool. Bacteria and especially fungi are often distinctly associated with a particular soil horizon. Fungal communities are less even than bacterial ones and show higher relative abundances of dominant species. While dominant bacterial species are distributed across the studied ecosystem, distribution of dominant fungi is often spatially restricted as they are only recovered at some locations. The sequences of cbhI gene encoding for cellobiohydrolase (exocellulase), an essential enzyme for cellulose decomposition, were compared in soil metagenome and metatranscriptome and assigned to their producers. Litter horizon exhibits higher diversity and higher proportion of expressed sequences than organic horizon. Cellulose decomposition is mediated by highly diverse fungal populations largely distinct between soil horizons. The results indicate that low-abundance species make an important contribution to decomposition processes in soils.


FEMS Microbiology Ecology | 2011

Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition

Jaroslav Šnajdr; Tomáš Cajthaml; Vendula Valášková; Věra Merhautová; Mirka Petránková; Peter Spetz; Kaisu Leppänen; Petr Baldrian

The links among the changes in litter chemistry, the activity of extracellular enzymes and the microbial community composition were observed in Quercus petraea litter. Three phases of decomposition could be distinguished. In the early 4-month stage, with high activities of β-glucosidase, β-xylosidase and cellobiohydrolase, 16.4% of litter was decomposed. Hemicelluloses were rapidly removed while cellulose and lignin degradation was slow. In months 4-12, with high endocellulase and endoxylanase activities, decomposition of cellulose prevailed and 31.8% of litter mass was lost. After the third phase of decomposition until month 24 with high activity of ligninolytic enzymes, the litter mass loss reached 67.9%. After 2 years of decay, cellulose decomposition was almost complete and most of the remaining polysaccharides were in the form of hemicelluloses. Fungi largely dominated over bacteria as leaf endophytes and also in the litter immediately before contact with soil, and this fungal dominance lasted until month 4. Bacterial biomass (measured as phospholipid fatty acid content) in litter increased with time but also changed qualitatively, showing an increasing number of Actinobacteria. This paper shows that the dynamics of decomposition of individual litter components changes with time in accordance with the changes in the microbial community composition and its production of extracellular enzymes.


Plant and Soil | 2011

Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil

Petr Baldrian; Jana Voříšková; Petra Dobiášová; Věra Merhautová; Ludmila Lisá; Vendula Valášková

Production of extracellular enzymes participating in the degradation of biopolymers was studied in 29 strains of nonbasidiomycetous microfungi isolated from Quercus petraea forest soil based on the frequency of occurrence. Most of the isolates were ascomycetes and belonged to the genera Acremonium, Alternaria, Cladosporium, Geomyces, Hypocrea, Myrothecium, Ochrocladosporium, and Penicillium (18 isolates), and two isolates were zygomycetes. Only six isolates showed phenol oxidation activity which was low and none of the strains were able to degrade humic acids. Approximately half of the strains were able to degrade cellulose and all but six degraded chitin. Most strains produced significant amounts of the cellulolytic enzymes cellobiohydrolase and β-glucosidase and the chitinolytic enzymes chitinase, chitobiosidase, and N-acetylglucosaminidase. The highest cellulase activities were found in Penicillium strains, and the highest activity of chitinolytic enzymes was found in Acremonium sp. The production of the hemicellulose-degrading enzymes α-galactosidase, β-galactosidase, and α-mannosidase was mostly low. The microfungal strains were able to produce significant growth on a range of 41–87, out of 95 simple C-containing substrates tested in a Biolog™ assay, monosaccharides being for all strains the most rapidly metabolized C-sources. Comparison with saprotrophic basidiomycetes from the same environment showed that microfungi have similar cellulolytic capabilities and higher chitinase activities which testifies for their active role in the decomposition of both lignocellulose and dead fungal biomass, important pools of soil carbon.


The ISME Journal | 2009

Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood.

Vendula Valášková; Wietse de Boer; Paulien J. A. Klein Gunnewiek; Martin Pospíšek; Petr Baldrian

White-rot fungi are major degraders of woody materials in terrestrial environments because of their ability to decompose lignin. However, little is known on the possible associations of white-rot fungi with other microorganisms during wood decay. We investigated the numbers, community composition and functional traits of bacteria present in natural wood samples under advanced decay by the white-rot basidiomycete Hypholoma fasciculare. The wood samples contained high numbers of cultivable bacteria (0.2–8 × 109 colony forming units (CFU) per g of dry wood). Most cultivable bacteria belonged to Proteobacteria and Acidobacteria (75% and 23% of sequences, respectively). The same phyla were also found to be dominant (59% and 23%, respectively) using a non-culturable quantification technique, namely, direct cloning and sequencing of 16sRNA genes extracted from wood. Bacteria that could be subcultured consisted of acid-tolerant strains that seemed to rely on substrates released by lignocellulolytic enzyme activities of the fungus. There were no indications for antagonism (antibiosis) of the bacteria against the fungus.


FEMS Microbiology Ecology | 2011

Saprotrophic basidiomycete mycelia and their interspecific interactions affect the spatial distribution of extracellular enzymes in soil

Jaroslav Šnajdr; Petra Dobiášová; Tomáš Větrovský; Vendula Valášková; Alaa Alawi; Lynne Boddy; Petr Baldrian

Saprotrophic cord-forming basidiomycetes are important decomposers of lignocellulosic substrates in soil. The production of extracellular hydrolytic enzymes was studied during the growth of two saprotrophic basidiomycetes, Hypholoma fasciculare and Phanerochaete velutina, across the surface of nonsterile soil microcosms, along with the effects of these basidiomycetes on fungi and bacteria within the soil. Higher activities of α-glucosidase, β-glucosidase, cellobiohydrolase, β-xylosidase, phosphomonoesterase and phosphodiesterase, but not of arylsulphatase, were recorded beneath the mycelia. Despite the fact that H. fasciculare, with exploitative hyphal growth, produced much denser hyphal cover on the soil surface than P. velutina, with explorative growth, both fungi produced similar amounts of extracellular enzymes. In the areas where the mycelia of H. fasciculare and P. velutina interacted, the activities of N-acetylglucosaminidase, α-glucosidase and phosphomonoesterase, the enzymes potentially involved in hyphal cell wall damage, and the utilization of compounds released from damaged hyphae of interacting fungi, were particularly increased. No significant differences in fungal biomass were observed between basidiomycete-colonized and noncolonized soil, but bacterial biomass was reduced in soil with H. fasciculare. The increases in the activities of β-xylosidase, β-glucosidase, phosphomonoesterase and cellobiohydrolase with increasing fungal:bacterial biomass ratio indicate the positive effects of fungal enzymes on nutrient release and bacterial abundance, which is reflected in the positive correlation of bacterial and fungal biomass content.


International Journal of Systematic and Evolutionary Microbiology | 2012

Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood

Irina S. Kulichevskaya; L.A. Kostina; Vendula Valášková; W.I.C. Rijpstra; J.S. Sinninghe Damsté; W.F. de Boer; Svetlana N. Dedysh

Two strains of subdivision 1 Acidobacteria, a pink-pigmented bacterium KA1(T) and a colourless isolate WH120(T), were obtained from acidic Sphagnum peat and wood under decay by the white-rot fungus Hyploma fasciculare, respectively. Cells of these isolates were Gram-negative-staining, non-motile, short rods, which were covered by large polysaccharide capsules and occurred singly, in pairs, or in short chains. Strains KA1(T) and WH120(T) were strictly aerobic mesophiles that grew between 10 and 33 °C, with an optimum at 22-28 °C. Both isolates developed under acidic conditions, but strain WH120(T) was more acidophilic (pH growth range 3.5-6.4; optimum, 4.0-4.5) than strain KA1(T) (pH growth range 3.5-7.3; optimum , 5.0-5.5). The preferred growth substrates were sugars. In addition, the wood-derived isolate WH120(T) grew on oxalate, lactate and xylan, while the peat-inhabiting acidobacterium strain KA1(T) utilized galacturonate, glucuronate and pectin. The major fatty acids were iso-C(15:0) and iso-C(17:1)ω8c; the cells also contained significant amounts of 13,16-dimethyl octacosanedioic acid. The quinone was MK-8. The DNA G+C contents of strains KA1(T) and WH120(T) were 54.1 and 51.7 mol%, respectively. Strains KA1(T) and WH120(T) displayed 97.8% 16S rRNA gene sequence similarity to each other. The closest recognized relatives were Acidobacterium capsulatum and Telmatobacter bradus (93.4-94.3% 16S rRNA gene sequence similarity). These species differed from strains KA1(T) and WH120(T) by their ability to grow under anoxic conditions, the absence of capsules, presence of cell motility and differing fatty acid composition. Based on these differences, the two new isolates are proposed as representing a novel genus, Acidicapsa gen. nov., and two novel species. Acidicapsa borealis gen. nov., sp. nov. is the type species for the new genus with strain KA1(T) (=DSM 23886(T)=LMG 25897(T)=VKM B-2678(T)) as the type strain. The name Acidicapsa ligni sp. nov. is proposed for strain WH120(T) (=LMG 26244(T)=VKM B-2677(T)=NCCB 100371(T)).


FEMS Microbiology Ecology | 2011

Development of bacterial community during spontaneous succession on spoil heaps after brown coal mining

Michaela Urbanová; Jan Kopecký; Vendula Valášková; Marketa Sagova-Mareckova; Dana Elhottová; Martina Kyselková; Yvan Moënne-Loccoz; Petr Baldrian

Changes in the abundance of bacteria and fungi and in the composition of bacterial communities during primary succession were investigated in a brown coal mine deposit area near Sokolov, the Czech Republic, using phospholipid fatty acids analysis, microarray and 16S rRNA gene sequencing. The study considered a chronosequence of sites undergoing spontaneous succession: 6-, 12-, 21- and 45-year-old and a 21-year-old site revegetated with Alnus glutinosa. During succession, organic carbon and the total nitrogen content increased while the pH and the C/N ratio decreased. Microbial biomass and bacterial diversity increased until 21 years and decreased later; bacteria dominated over fungi in the initial and late phases of succession. Bacterial community composition of the 6-year-old site with no vegetation cover largely differed from the older sites, especially by a higher content of Gammaproteobacteria, Cyanobacteria and some Alphaproteobacteria. Bacteria belonging to the genera Acidithiobacillus, Thiobacillus and related taxa, the CO(2) and N(2) fixers, dominated the community at this site. In the later phases, bacterial community development seemed to reflect more the changes in soil nutrient content and pH than vegetation with a decrease of Actinobacteria and an increase of Acidobacteria. The site revegetated with A. glutinosa resembled the 45-year-old primary succession site and exhibited an even lower pH and C/N ratio, indicating that recultivation is able to accelerate soil development.


Fungal Biology | 2010

Effect of long-term preservation of basidiomycetes on perlite in liquid nitrogen on their growth, morphological, enzymatic and genetic characteristics

Ladislav Homolka; Ludmila Lisá; Ivana Eichlerová; Vendula Valášková; Petr Baldrian

The macro- and micro-morphological features, mycelial extension rate, enzymatic activities and possible genetic changes were studied in 30 selected strains of basidiomycetes after 10-year cryopreservation on perlite in liquid nitrogen (LN). Comparisons with the same strains preserved by serial transfers on nutrient media at 4°C were also conducted. Production of ligninolytic enzymes and hydrogen peroxide was studied by quantitative spectrophotometric methods, whereas semiquantitative API ZYM testing was used to compare the levels of a wide range of hydrolytic enzymes. Our results show that cryopreservation in LN did not cause morphological changes in any isolate. The vitality of all fungi was successfully preserved and none of the physiological features were lost, even though the extension rate and enzyme activity were slightly affected. Moreover, sequence analysis of eight strains did not detect any changes in their genetic features after cryopreservation. These findings suggest that the perlite-based freezing protocol is suitable for long-term preservation of large numbers of basidiomycetes.


Soil Biology & Biochemistry | 2008

Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil

Jaroslav Šnajdr; Vendula Valášková; Veˇra Merhautová; Jana Herinková; Tomáš Cajthaml; Petr Baldrian

Collaboration


Dive into the Vendula Valášková's collaboration.

Top Co-Authors

Avatar

Petr Baldrian

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Tomáš Cajthaml

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Jana Voříšková

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Ludmila Lisá

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Tomáš Větrovský

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Dana Elhottová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Ivana Eichlerová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jakub Ridl

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jan Frouz

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Jiří Gabriel

Czechoslovak Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge