Venkat S. R. K. Yedavalli
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Venkat S. R. K. Yedavalli.
Cell | 2004
Venkat S. R. K. Yedavalli; Christine Neuveut; Ya-Hui Chi; Lawrence Kleiman; Kuan-Teh Jeang
A single transcript in its unspliced and spliced forms directs the synthesis of all HIV-1 proteins. Although nuclear export of intron-containing cellular transcripts is restricted in mammalian cells, HIV-1 has evolved the viral Rev protein to overcome this restriction for viral transcripts. Previously, CRM1 was identified as a cellular cofactor for Rev-dependent export of intron-containing HIV-1 RNA. Here, we present evidence that Rev/CRM1 activity utilizes the ATP-dependent DEAD box RNA helicase, DDX3. We show that DDX3 is a nucleo-cytoplasmic shuttling protein, which binds CRM1 and localizes to nuclear membrane pores. Knockdown of DDX3 using either antisense vector or dominant-negative mutants suppressed Rev-RRE-function in the export of incompletely spliced HIV-1 RNAs. Plausibly, DDX3 is the human RNA helicase which functions in the CRM1 RNA export pathway analogously to the postulated role for Dbp5p in yeast mRNA export.
Journal of Biological Chemistry | 2009
Man Lung Yeung; Laurent Houzet; Venkat S. R. K. Yedavalli; Kuan-Teh Jeang
Short interfering RNAs (siRNAs) have been used to inhibit HIV-1 replication. The durable inhibition of HIV-1 replication by RNA interference has been impeded, however, by a high mutation rate when viral sequences are targeted and by cytotoxicity when cellular genes are knocked down. To identify cellular proteins that contribute to HIV-1 replication that can be chronically silenced without significant cytotoxicity, we employed a shRNA library that targets 54,509 human transcripts. We used this library to select a comprehensive population of Jurkat T-cell clones, each expressing a single discrete shRNA. The Jurkat clones were then infected with HIV-1. Clones that survived viral infection represent moieties silenced for a human mRNA needed for virus replication, but whose chronic knockdown did not cause cytotoxicity. Overall, 252 individual Jurkat mRNAs were identified. Twenty-two of these mRNAs were secondarily verified for their contributions to HIV-1 replication. Five mRNAs, NRF1, STXBP2, NCOA3, PRDM2, and EXOSC5, were studied for their effect on steps of the HIV-1 life cycle. We discuss the similarities and differences between our shRNA findings for HIV-1 using a spreading infection assay in human Jurkat T-cells and results from other investigators who used siRNA-based screenings in HeLa or 293T cells.
Mbio | 2013
Quan-Hai Zhang; Chia-Yen Chen; Venkat S. R. K. Yedavalli; Kuan-Teh Jeang
ABSTRACT Most of the human genome is transcribed into protein-noncoding RNAs (ncRNAs), including small ncRNAs and long ncRNAs (lncRNAs). Over the past decade, rapidly emerging evidence has increasingly supported the view that lncRNAs serve key regulatory and functional roles in mammal cells. HIV-1 replication relies on various cell functions. To date, while the involvement of host protein factors and microRNAs (miRNAs) in the HIV-1 life cycle has been extensively studied, the relationship between lncRNAs and HIV-1 remains uncharacterized. Here, we have profiled 83 disease-related lncRNAs in HIV-1-infected T cells. We found NEAT1 to be one of several lncRNAs whose expression is changed by HIV-1 infection, and we have characterized its role in HIV-1 replication. We report here that the knockdown of NEAT1 enhances virus production through increased nucleus-to-cytoplasm export of Rev-dependent instability element (INS)-containing HIV-1 mRNAs. IMPORTANCE Long protein-noncoding RNAs (lncRNAs) play roles in regulating gene expression and modulating protein activities. There is emerging evidence that lncRNAs are involved in the replication of viruses. To our knowledge, this report is the first to characterize a role contributed by an lncRNA, NEAT1, to HIV-1 replication. NEAT1 is essential for the integrity of the nuclear paraspeckle substructure. Based on our findings from NEAT1 knockdown, we have identified the nuclear paraspeckle body as another important subcellular organelle for HIV-1 replication. Long protein-noncoding RNAs (lncRNAs) play roles in regulating gene expression and modulating protein activities. There is emerging evidence that lncRNAs are involved in the replication of viruses. To our knowledge, this report is the first to characterize a role contributed by an lncRNA, NEAT1, to HIV-1 replication. NEAT1 is essential for the integrity of the nuclear paraspeckle substructure. Based on our findings from NEAT1 knockdown, we have identified the nuclear paraspeckle body as another important subcellular organelle for HIV-1 replication.
The EMBO Journal | 2008
Hidekatsu Iha; Jean-Marie Peloponese; Lynn Verstrepen; Grzegorz Zapart; Fumiyo Ikeda; C Dahlem Smith; Matthew F. Starost; Venkat S. R. K. Yedavalli; Karen Heyninck; Ivan Dikic; Rudi Beyaert; Kuan-Teh Jeang
Nuclear factor kappa B (NF‐κB) is a key mediator of inflammation. Unchecked NF‐κB signalling can engender autoimmune pathologies and cancers. Here, we show that Tax1‐binding protein 1 (TAX1BP1) is a negative regulator of TNF‐α‐ and IL‐1β‐induced NF‐κB activation and that binding to mono‐ and polyubiquitin by a ubiquitin‐binding Zn finger domain in TAX1BP1 is needed for TRAF6 association and NF‐κB inhibition. Mice genetically knocked out for TAX1BP1 are born normal, but develop age‐dependent inflammatory cardiac valvulitis, die prematurely, and are hypersensitive to low doses of TNF‐α and IL‐1β. TAX1BP1−/− cells are more highly activated for NF‐κB than control cells when stimulated with TNF‐α or IL‐1β. Mechanistically, TAX1BP1 acts in NF‐κB signalling as an essential adaptor between A20 and its targets.
Journal of Virology | 2004
Jean-Marie Peloponese; Hidekatsu Iha; Venkat S. R. K. Yedavalli; Akiko Miyazato; Yan Li; Kerstin Haller; Monsef Benkirane; Kuan-Teh Jeang
ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) encodes a 40-kDa Tax phosphoprotein. Tax is a transcriptional activator which modulates expression of the viral long terminal repeat and transcription of many cellular genes. Because Tax is a critical HTLV-1 factor which mediates viral transformation of T cells during the genesis of adult T-cell leukemia, it is important to understand the processes which can activate or inactivate Tax function. Here, we report that ubiquitination of Tax is a posttranscriptional mechanism which regulates Tax function. We show that ubiquitination does not target Tax for degradation by the proteasome. Rather, ubiquitin addition modifies Tax in a proteasome-independent manner from an active to a less-active transcriptional form.
Journal of Virology | 2005
Venkat S. R. K. Yedavalli; Hsiu-Ming Shih; Yu-Ping Chiang; Chun-Yi Lu; Luan-Yin Chang; Mao-Yuan Chen; Che-Yen Chuang; Andrew I. Dayton; Kuan-Teh Jeang; Li-Min Huang
ABSTRACT Human immunodeficiency virus type 1 viral protein R (Vpr) is required for viral pathogenesis and has been implicated in T-cell apoptosis through its activation of caspase 3 and caspase 9 and perturbation of mitochondrial membrane potential. To understand better Vpr-mitochondria interaction, we report here the identification of antiapoptotic mitochondrial protein HAX-1 as a novel Vpr target. We show that Vpr and HAX-1 physically associate with each other. Overexpression of Vpr in cells dislocates HAX-1 from its normal residence in mitochondria and creates mitochondrion instability and cell death. Conversely, overexpression of HAX-1 suppressed the proapoptotic activity of Vpr.
Oncogene | 2003
Hidekatsu Iha; Karen V. Kibler; Venkat S. R. K. Yedavalli; Jean-Marie Peloponese; Kerstin Haller; Akiko Miyazato; Takefumi Kasai; Kuan-Teh Jeang
Nuclear factor-κB essential modulator (NEMO), also called IKKγ, has been proposed as a ‘universal’ adaptor of the I-κB kinase (IKK) complex for stimuli such as proinflammatory cytokines, microbes, and the HTLV-I Tax oncoprotein. Currently, it remains unclear whether the many signals that activate NF-κB through NEMO converge identically or differently. We have adopted two approaches to answer this question. First, we generated and targeted intracellularly three NEMO-specific monoclonal antibodies (mAbs). These mAbs produced two distinct intracellular NF-κB inhibition profiles segregating TNFα from Tax activation. Second, using NEMO knockout mouse fibroblasts and 10 NEMO mutants, we found that different regions function in trans either to complement or to inhibit dominantly TNFα, IL-1β, or Tax activation of NF-κB. For instance, NEMO (1—245 amino acids) supported Tax-mediated NF-κB activation, but did not serve TNFα- or IL-1β signaling. Altogether, our findings indicate that while NEMO ‘universally’ adapts numerous NF-κB activators, it may do so through separable domains. We provide the first evidence that selective targeting of NEMO can abrogate oncogenic Tax signaling without affecting signals used for normal cellular metabolism.
Journal of Medicinal Chemistry | 2008
Venkat S. R. K. Yedavalli; Ning Zhang; Hongyi Cai; Peng Zhang; Matthew F. Starost; Ramachandra S. Hosmane; Kuan-Teh Jeang
A series of ring expanded nucleoside (REN) analogues were synthesized and screened for inhibition of cellular RNA helicase activity and human immunodeficiency virus type 1 (HIV-1) replication. We identified two compounds, 1 and 2, that inhibited the ATP dependent activity of human RNA helicase DDX3. Compounds 1 and 2 also suppressed HIV-1 replication in T cells and monocyte-derived macrophages. Neither compound at therapeutic doses was significantly toxic in ex vivo cell culture or in vivo in mice. Our findings provide proof-of-concept that a cellular factor, an RNA helicase, could be targeted for inhibiting HIV-1 replication.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Lea Cunningham; Steven M. Finckbeiner; R. Katherine Hyde; Noel Southall; Juan J. Marugan; Venkat S. R. K. Yedavalli; Seameen Dehdashti; William C. Reinhold; Lemlem Alemu; Ling Zhao; Jing-Ruey J. Yeh; Raman Sood; Yves Pommier; Christopher P. Austin; Kuan-Teh Jeang; Wei Zheng; Paul Liu
Core binding factor (CBF) leukemias, those with translocations or inversions that affect transcription factor genes RUNX1 or CBFB, account for ∼24% of adult acute myeloid leukemia (AML) and 25% of pediatric acute lymphocytic leukemia (ALL). Current treatments for CBF leukemias are associated with significant morbidity and mortality, with a 5-y survival rate of ∼50%. We hypothesize that the interaction between RUNX1 and CBFβ is critical for CBF leukemia and can be targeted for drug development. We developed high-throughput AlphaScreen and time-resolved fluorescence resonance energy transfer (TR-FRET) methods to quantify the RUNX1–CBFβ interaction and screen a library collection of 243,398 compounds. Ro5-3335, a benzodiazepine identified from the screen, was able to interact with RUNX1 and CBFβ directly, repress RUNX1/CBFB-dependent transactivation in reporter assays, and repress runx1-dependent hematopoiesis in zebrafish embryos. Ro5-3335 preferentially killed human CBF leukemia cell lines, rescued preleukemic phenotype in a RUNX1–ETO transgenic zebrafish, and reduced leukemia burden in a mouse CBFB–MYH11 leukemia model. Our data thus confirmed that RUNX1–CBFβ interaction can be targeted for leukemia treatment and we have identified a promising lead compound for this purpose.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Venkat S. R. K. Yedavalli; Kuan-Teh Jeang
5′-mRNA capping is an early modification that affects pre-mRNA synthesis/splicing, RNA cytoplasmic transport, and mRNA translation and turnover. In eukaryotes, a 7-methylguanosine (m7G) cap is added to newly transcribed RNA polymerase II (RNAP II) transcripts. A subset of RNAP II-transcribed cellular RNAs, including small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), and telomerase RNA, is further hypermethylated at the exocyclic N2 of the guanosine to create a trimethylguanosine (TMG)-capped RNA. Some of these TMG-capped RNAs are transported within the nucleus and from the nucleus to the cytoplasm by the CRM-1 (required for chromosome region maintenance) protein. CRM-1 is also used to export Rev/RRE-dependent unspliced/ partially spliced HIV-1 RNAs. Here we report that like snRNAs and snoRNAs, some Rev/RRE-dependent HIV-1 RNAs are TMG-capped. The methyltransferase responsible for TMG modification of HIV-1 RNAs is the human PIMT (peroxisome proliferator-activated receptor-interacting protein with methyltransferase) protein. TMG capping of unspliced/partially spliced HIV-1 RNAs represents a new regulatory mechanism for selective expression.