Venkata Krishnan Ramaswamy
University of Cagliari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Venkata Krishnan Ramaswamy.
Scientific Reports | 2017
Venkata Krishnan Ramaswamy; Attilio Vittorio Vargiu; Giuliano Malloci; Jürg Dreier; Paolo Ruggerone
Resistance-Nodulation-cell Division (RND) transporters AcrB and AcrD of Escherichia coli expel a wide range of substrates out of the cell in conjunction with AcrA and TolC, contributing to the onset of bacterial multidrug resistance. Despite sharing an overall sequence identity of ~66% (similarity ~80%), these RND transporters feature distinct substrate specificity patterns whose underlying basis remains elusive. We performed exhaustive comparative analyses of the putative substrate binding pockets considering crystal structures, homology models and conformations extracted from multi-copy μs-long molecular dynamics simulations of both AcrB and AcrD. The impact of physicochemical and topographical properties (volume, shape, lipophilicity, electrostatic potential, hydration and distribution of multi-functional sites) within the pockets on their substrate specificities was quantitatively assessed. Differences in the lipophilic and electrostatic potentials among the pockets were identified. In particular, the deep pocket of AcrB showed the largest lipophilicity convincingly pointing out its possible role as a lipophilicity-based selectivity filter. Furthermore, we identified dynamic features (not inferable from sequence analysis or static structures) such as different flexibilities of specific protein loops that could potentially influence the substrate recognition and transport profile. Our findings can be valuable for drawing structure (dynamics)-activity relationship to be employed in drug design.
Biochimica et Biophysica Acta | 2018
Attilio Vittorio Vargiu; Venkata Krishnan Ramaswamy; Ivana Malvacio; Giuliano Malloci; Ulrich Kleinekathöfer; Paolo Ruggerone
BACKGROUND Efflux pumps of the Resistance-Nodulation-cell Division superfamily confer multi-drug resistance to Gram-negative bacteria. The most-studied polyspecific transporter belonging to this class is the inner-membrane trimeric antiporter AcrB of Escherichia coli. In previous studies, a functional rotation mechanism was proposed for its functioning, according to which the three monomers undergo concerted conformational changes facilitating the extrusion of substrates. However, the molecular determinants and the energetics of this mechanism still remain unknown, so its feasibility must be proven mechanistically. METHODS A computational protocol able to mimic the functional rotation mechanism in AcrB was developed. By using multi-bias molecular dynamics simulations we characterized the translocation of the substrate doxorubicin driven by conformational changes of the protein. In addition, we estimated for the first time the free energy profile associated to this process. RESULTS We provided a molecular view of the process in agreement with experimental data. Moreover, we showed that the conformational changes occurring in AcrB enable the formation of a layer of structured waters on the internal surface of the transport channel. This water layer, in turn, allows for a fairly constant hydration of the substrate, facilitating its diffusion over a smooth free energy profile. CONCLUSIONS Our findings reveal a new molecular mechanism of polyspecific transport whereby water contributes by screening potentially strong substrate-protein interactions. GENERAL SIGNIFICANCE We provided a mechanistic understanding of a fundamental process related to multi-drug transport. Our results can help rationalizing the behavior of other polyspecific transporters and designing compounds avoiding extrusion or inhibitors of efflux pumps.
Archive | 2016
Venkata Krishnan Ramaswamy; Pierpaolo Cacciotto; Giuliano Malloci; Paolo Ruggerone; Attilio Vittorio Vargiu
Antimicrobial resistance is a key public health concern of our era due to an ever-increasing number of drug-resistant pathogens, including several Gram-negative bacilli. The latter are endowed with a low permeable outer membrane and with numerous chromosomally encoded multidrug efflux pumps, which are not only ubiquitous but also polyspecific, thus recognizing a broad range of compounds. Efflux pumps are a major defense mechanism of these organisms against antimicrobials as they can significantly increase the levels of resistance by allowing time for the organisms to develop specific resistance mechanisms. One of the potential strategies to reinvigorate the efficacy of antimicrobials is by joint administration with efflux pump inhibitors, which either block the substrate binding and/or hinder any of the transport-dependent steps of the pumps. In this chapter, we provide an overview of multidrug resistance efflux pumps, their inhibition strategies, and the important findings from the various computational simulation studies reported to date with respect to the rational design of inhibitors and on deciphering their mechanism of action.
Research in Microbiology | 2018
Attilio Vittorio Vargiu; Venkata Krishnan Ramaswamy; Giuliano Malloci; Ivana Malvacio; Alessio Atzori; Paolo Ruggerone
The putative mechanism by which bacterial RND-type multidrug efflux pumps recognize and transport their substrates is a complex and fascinating enigma of structural biology. How a single protein can recognize a huge number of unrelated compounds and transport them through one or just a few mechanisms is an amazing feature not yet completely unveiled. The appearance of cooperativity further complicates the understanding of structure-dynamics-activity relationships in these complex machineries. Experimental techniques may have limited access to the molecular determinants and to the energetics of key processes regulating the activity of these pumps. Computer simulations are a complementary approach that can help unveil these features and inspire new experiments. Here we review recent computational studies that addressed the various molecular processes regulating the activity of RND efflux pumps.
Journal of Molecular Biology | 2018
Elia Zomot; Eliane Hadas Yardeni; Attilio Vittorio Vargiu; Heng-Keat Tam; Giuliano Malloci; Venkata Krishnan Ramaswamy; Michal Perach; Paolo Ruggerone; Klaas M. Pos; Eitan Bibi
Secondary multidrug (Mdr) transporters utilize ion concentration gradients to actively remove antibiotics and other toxic compounds from cells. The model Mdr transporter MdfA from Escherichia coli exchanges dissimilar drugs for protons. The transporter should open at the cytoplasmic side to enable access of drugs into the Mdr recognition pocket. Here we show that the cytoplasmic rim around the Mdr recognition pocket represents a previously overlooked important regulatory determinant in MdfA. We demonstrate that increasing the positive charge of the electrically asymmetric rim dramatically inhibits MdfA activity and sometimes even leads to influx of planar, positively charged compounds, resulting in drug sensitivity. Our results suggest that unlike the mutants with the electrically modified rim, the membrane-embedded wild-type MdfA exhibits a significant probability of an inward-closed conformation, which is further increased by drug binding. Since MdfA binds drugs from its inward-facing environment, these results are intriguing and raise the possibility that the transporter has a sensitive, drug-induced conformational switch, which favors an inward-closed state.
Archive | 2018
Pierpaolo Cacciotto; Venkata Krishnan Ramaswamy; Giuliano Malloci; Paolo Ruggerone; Attilio Vittorio Vargiu
Efflux pumps of the resistance nodulation division (RND) superfamily are among the major contributors to intrinsic and acquired multidrug resistance in Gram-negative bacteria. Structural information on AcrAB-TolC and MexAB-OprM, major efflux pumps of Escherichia coli and Pseudomonas aeruginosa respectively, boosted intensive research aimed at understanding the molecular mechanisms ruling the active extrusion processes. In particular, several studies were devoted to the understanding of the determinants behind the extraordinary broad specificity of the RND transporters AcrB and MexB. In this chapter, we discuss the ever-growing role computational methods have been playing in deciphering key structural and dynamical features of these transporters and of their interaction with substrates and inhibitors. We further discuss and illustrate examples from our lab of how molecular docking, homology modeling, all-atom molecular dynamics simulations and in silico free energy estimations can all together give precious insights into the processes of recognition and extrusion of substrates, as well as on the possible inhibition strategies.
Frontiers in Microbiology | 2018
Venkata Krishnan Ramaswamy; Attilio Vittorio Vargiu; Giuliano Malloci; Jürg Dreier; Paolo Ruggerone
Secondary multidrug transporters of the resistance-nodulation-cell division (RND) superfamily contribute crucially to antibiotic resistance in Gram-negative bacteria. Compared to the most studied transporter AcrB of Escherichia coli, little is known about the molecular determinants of distinct polyspecificities of the most important RND transporters MexB and MexY of Pseudomonas aeruginosa. In an effort to add knowledge on this topic, we performed an exhaustive atomic-level comparison of the main putative recognition sites (access and deep binding pockets) in these two Mex transporters. We identified an underlying link between some structural, chemical and dynamical features of the binding pockets and the physicochemical nature of the corresponding substrates recognized by either one or both pumps. In particular, mosaic-like lipophilic and electrostatic surfaces of the binding pockets provide for both proteins several multifunctional sites for diffuse binding of diverse substrates. Specific lipophilicity signatures of the weakly conserved deep pocket suggest a key role of this site as a selectivity filter as in Acr transporters. Finally, the different dynamics of the bottom-loop in MexB and MexY support its possible role in binding of large substrates. Our work represents the first comparative study of the major RND transporters in P. aeruginosa and also the first structure-based study of MexY, for which no experimental structure is available yet.
Essays in Biochemistry | 2017
Venkata Krishnan Ramaswamy; Pierpaolo Cacciotto; Giuliano Malloci; Attilio Vittorio Vargiu; Paolo Ruggerone
Virus Research | 2018
Venkata Krishnan Ramaswamy; Francesco Di Palma; Attilio Vittorio Vargiu; Angela Corona; Dario Piano; Paolo Ruggerone; Luca Zinzula; Enzo Tramontano
255th ACS National Meeting & Exposition | 2018
Francesco Di Palma; Venkata Krishnan Ramaswamy; Gianluca Daino; Aldo Frau; Angela Corona; Luca Zinzula; Enzo Tramontano; Paolo Ruggerone; Attilio Vittorio Vargiu