Venkata Lokesh Battula
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Venkata Lokesh Battula.
Annals of the New York Academy of Sciences | 2007
Hans-Jörg Bühring; Venkata Lokesh Battula; Sabrina Treml; Bernhard Schewe; Lothar Kanz; Wichard Vogel
Abstract: The isolation of mesenchymal stem cells (MSC) from primary tissue is hampered by the limited selectivity of available markers. So far, CD271 is one of the most specific markers for bone marrow (BM)‐derived MSC. In search of additional markers, monoclonal antibodies (mAbs) with specificity for immature cells were screened by flow cytometry for their specific reactivity with the rare CD271+ population. The recognized CD271+ populations were fractionated by fluorescence‐activated cell sorting and the clonogenic capacity of the sorted cells was analyzed for their ability to give rise to CFU‐F. The results showed that only the CD271bright but not the CD271dim population contained CFU‐F. Two‐color flow cytometry analysis revealed that only the CD271bright population was positive for the established MSC markers CD10, CD13, CD73, and CD105. In addition, a variety of mAbs specific for novel and partially unknown antigens selectively recognized the CD271bright population but no other BM cells. The new MSC‐specific molecules included the platelet‐derived growth factor receptor‐β (CD140b), HER‐2/erbB2 (CD340), frizzled‐9 (CD349), the recently described W8B2 antigen, as well as cell‐surface antigens defined by the antibodies W1C3, W3D5, W4A5, W5C4, W5C5, W7C6, 9A3, 58B1, F9‐3C2F1, and HEK‐3D6. In conclusion, the described markers are suitable for the prospective isolation of highly purified BM‐MSC. These MSC may be used as an improved starting population for transplantation in diseases like osteogenesis imperfecta, cartilage repair, and myocardial infarction.
Stem Cells | 2009
Shannon Kidd; Erika L. Spaeth; Jennifer Dembinski; Martin Dietrich; Keri Watson; Ann H. Klopp; Venkata Lokesh Battula; Micheal Weil; Michael Andreeff; Frank C. Marini
Multipotent mesenchymal stromal/stem cells (MSC) have shown potential clinical utility. However, previous assessments of MSC behavior in recipients have relied on visual detection in host tissue following sacrifice, failing to monitor in vivo MSC dispersion in a single animal and limiting the number of variables that can be observed concurrently. In this study, we used noninvasive, in vivo bioluminescent imaging to determine conditions under which MSC selectively engraft in sites of inflammation. MSC modified to express firefly luciferase (ffLuc‐MSC) were injected into healthy mice or mice bearing inflammatory insults, and MSC localization was followed with bioluminescent imaging. The inflammatory insults investigated included cutaneous needle‐stick and surgical incision wounds, as well as xenogeneic and syngeneic tumors. We also compared tumor models in which MSC were i.v. or i.p. delivered. Our results demonstrate that ffLuc‐expressing human MSC (hMSC) systemically delivered to nontumor‐bearing animals initially reside in the lungs, then egress to the liver and spleen, and decrease in signal over time. However, hMSC in wounded mice engraft and remain detectable only at injured sites. Similarly, in syngeneic and xenogeneic breast carcinoma‐bearing mice, bioluminescent detection of systemically delivered MSC revealed persistent, specific colocalization with sites of tumor development. This pattern of tropism was also observed in an ovarian tumor model in which MSC were i.p. injected. In this study, we identified conditions under which MSC tropism and selective engraftment in sites of inflammation can be monitored by bioluminescent imaging over time. Importantly, these consistent findings were independent of tumor type, immunocompetence, and route of MSC delivery. STEM CELLS 2009;27:2614–2623
Haematologica | 2009
Venkata Lokesh Battula; Sabrina Treml; Petra M. Bareiss; Friederike Gieseke; Helene Roelofs; Peter de Zwart; Ingo Müller; Bernhard Schewe; Thomas Skutella; Willem E. Fibbe; Lothar Kanz; Hans Jörg Bühring
Mesenchymal stem cells are self-renewing cells with the ability to differentiate into osteocytes, chondrocytes and adipocytes. This article describes a subset of mesenchymal stem cells with distinct phenotypic and functional properties. Background Conventionally, mesenchymal stem cells are functionally isolated from primary tissue based on their capacity to adhere to a plastic surface. This isolation procedure is hampered by the unpredictable influence of co-cultured hematopoietic and/or other unrelated cells and/or by the elimination of a late adhering mesenchymal stem cells subset during removal of undesired cells. To circumvent these limitations, several antibodies have been developed to facilitate the prospective isolation of mesenchymal stem cells. Recently, we described a panel of monoclonal antibodies with superior selectivity for mesenchymal stem cells, including the monoclonal antibodies W8B2 against human mesenchymal stem cell antigen-1 (MSCA-1) and 39D5 against a CD56 epitope, which is not expressed on natural killer cells. Design and Methods Bone marrow derived mesenchymal stem cells from healthy donors were analyzed and isolated by flow cytometry using a large panel of antibodies against surface antigens including CD271, MSCA-1, and CD56. The growth of mesenchymal stem cells was monitored by colony formation unit fibroblast (CFU-F) assays. The differentiation of mesenchymal stem cells into defined lineages was induced by culture in appropriate media and verified by immunostaining. Results Multicolor cell sorting and CFU-F assays showed that mesenchymal stem cells were ~90-fold enriched in the MSCA-1+CD56− fraction and ~180-fold in the MSCA-1+CD56+ fraction. Phenotype analysis revealed that the expression of CD10, CD26, CD106, and CD146 was restricted to the MSCA-1+CD56− mesenchymal stem cells subset and CD166 to MSCA-1+CD56± mesenchymal stem cells. Further differentiation of these subsets showed that chondrocytes and pancreatic-like islets were predominantly derived from MSCA-1+CD56± cells whereas adipocytes emerged exclusively from MSCA-1+CD56− cells. The culture of single sorted MSCA-1+CD56+ cells resulted in the appearance of phenotypically heterogeneous clones with distinct proliferation and differentiation capacities. Conclusions Novel mesenchymal stem cells subsets with distinct phenotypic and functional properties were identified. Our data suggest that the MSCA-1+CD56+ subset is an attractive starting population for autologous chondrocyte transplantation.
Stem Cells | 2010
Venkata Lokesh Battula; Kurt W. Evans; Brett G. Hollier; Yuexi Shi; Frank C. Marini; Ayyakkannu Ayyanan; Rui Yu Wang; Cathrin Brisken; Rudy Guerra; Michael Andreeff; Sendurai A. Mani
The epithelial‐to‐mesenchymal transition (EMT) is an embryonic process that becomes latent in most normal adult tissues. Recently, we have shown that induction of EMT endows breast epithelial cells with stem cell traits. In this report, we have further characterized the EMT‐derived cells and shown that these cells are similar to mesenchymal stem cells (MSCs) with the capacity to differentiate into multiple tissue lineages. For this purpose, we induced EMT by ectopic expression of Twist, Snail, or transforming growth factor‐β in immortalized human mammary epithelial cells. We found that the EMT‐derived cells and MSCs share many properties including the antigenic profile typical of MSCs, that is, CD44+, CD24−, and CD45−. Conversely, MSCs express EMT‐associated genes, such as Twist, Snail, and mesenchyme forkhead 1 (FOXC2). Interestingly, CD140b (platelet‐derived growth factor receptor‐β), a marker for naive MSCs, is exclusively expressed in EMT‐derived cells and not in their epithelial counterparts. Moreover, functional analyses revealed that EMT‐derived cells but not the control cells can differentiate into alizarin red S‐positive mature osteoblasts, oil red O‐positive adipocytes and alcian blue‐positive chondrocytes similar to MSCs. We also observed that EMT‐derived cells but not the control cells invade and migrate towards MDA‐MB‐231 breast cancer cells similar to MSCs. In vivo wound homing assays in nude mice revealed that the EMT‐derived cells home to wound sites similar to MSCs. In conclusion, we have demonstrated that the EMT‐derived cells are similar to MSCs in gene expression, multilineage differentiation, and ability to migrate towards tumor cells and wound sites. STEM CELLS 2010;28:1435–1445
Journal of Clinical Investigation | 2012
Venkata Lokesh Battula; Yuexi Shi; Kurt W. Evans; Rui Yu Wang; Erika L. Spaeth; Rodrigo Jacamo; Rudy Guerra; Aysegul A. Sahin; Frank C. Marini; Gabriel N. Hortobagyi; Sendurai A. Mani; Michael Andreeff
Cancer stem cells (CSCs) are a small subpopulation of cancer cells that have increased resistance to conventional therapies and are capable of establishing metastasis. However, only a few biomarkers of CSCs have been identified. Here, we report that ganglioside GD2 (a glycosphingolipid) identifies a small fraction of cells in human breast cancer cell lines and patient samples that are capable of forming mammospheres and initiating tumors with as few as 10 GD2+ cells. In addition, the majority of GD2+ cells are also CD44hiCD24lo, the previously established CSC-associated cell surface phenotype. Gene expression analysis revealed that GD3 synthase (GD3S) is highly expressed in GD2+ as well as in CD44hiCD24lo cells and that interference with GD3S expression, either by shRNA or using a pharmacological inhibitor, reduced the CSC population and CSC-associated properties. GD3S knockdown completely abrogated tumor formation in vivo. Also, induction of epithelial-mesenchymal transition (EMT) in transformed human mammary epithelial cells (HMLER cells) dramatically increased GD2 as well as GD3S expression in these cells, suggesting a role of EMT in the origin of GD2+ breast CSCs. In summary, we identified GD2 as a new CSC-specific cell surface marker and GD3S as a potential therapeutic target for CSCs, with the possibility of improving survival and cure rates in patients with breast cancer.
Blood | 2014
Rodrigo Jacamo; Yuling Chen; Zhiqiang Wang; Wencai Ma; Mingjun Zhang; Erika L. Spaeth; Yunfei Wang; Venkata Lokesh Battula; Po Yee Mak; Schallmoser K; Peter P. Ruvolo; Wendy D. Schober; Elizabeth J. Shpall; Martin Nguyen; Strunk D; Carlos E. Bueso-Ramos; Sergej Konoplev; Richard Eric Davis; Marina Konopleva; Michael Andreeff
Leukemia cells are protected from chemotherapy-induced apoptosis by their interactions with bone marrow mesenchymal stromal cells (BM-MSCs). Yet the underlying mechanisms associated with this protective effect remain unclear. Genome-wide gene expression profiling of BM-MSCs revealed that coculture with leukemia cells upregulated the transcription of genes associated with nuclear factor (NF)-κB signaling. Moreover, primary BM-MSCs from leukemia patients expressed NF-κB target genes at higher levels than their normal BM-MSC counterparts. The blockade of NF-κB activation via chemical agents or the overexpression of the mutant form of inhibitor κB-α (IκBα) in BM-MSCs markedly reduced the stromal-mediated drug resistance in leukemia cells in vitro and in vivo. In particular, our unique in vivo model of human leukemia BM microenvironment illustrated a direct link between NF-κB activation and stromal-associated chemoprotection. Mechanistic in vitro studies revealed that the interaction between vascular cell adhesion molecule 1 (VCAM-1) and very late antigen-4 (VLA-4) played an integral role in the activation of NF-κB in the stromal and tumor cell compartments. Together, these results suggest that reciprocal NF-κB activation in BM-MSCs and leukemia cells is essential for promoting chemoresistance in the transformed cells, and targeting NF-κB or VLA-4/VCAM-1 signaling could be a clinically relevant mechanism to overcome stroma-mediated chemoresistance in BM-resident leukemia cells.
Blood | 2012
Ye Chen; Rodrigo Jacamo; Yue Xi Shi; Rui Yu Wang; Venkata Lokesh Battula; Sergej Konoplev; Dirk Strunk; Nicole A. Hofmann; Andreas Reinisch; Marina Konopleva; Michael Andreeff
The interactions between hematopoietic cells and the bone marrow (BM) microenvironment play a critical role in normal and malignant hematopoiesis and drug resistance. These interactions within the BM niche are unique and could be important for developing new therapies. Here, we describe the development of extramedullary bone and bone marrow using human mesenchymal stromal cells and endothelial colony-forming cells implanted subcutaneously into immunodeficient mice. We demonstrate the engraftment of human normal and leukemic cells engraft into the human extramedullary bone marrow. When normal hematopoietic cells are engrafted into the model, only discrete areas of the BM are hypoxic, whereas leukemia engraftment results in widespread severe hypoxia, just as recently reported by us in human leukemias. Importantly, the hematopoietic cell engraftment could be altered by genetical manipulation of the bone marrow microenvironment: Extramedullary bone marrow in which hypoxia-inducible factor 1α was knocked down in mesenchymal stromal cells by lentiviral transfer of short hairpin RNA showed significant reduction (50% ± 6%; P = .0006) in human leukemic cell engraftment. These results highlight the potential of a novel in vivo model of human BM microenvironment that can be genetically modified. The model could be useful for the study of leukemia biology and for the development of novel therapeutic modalities aimed at modifying the hematopoietic microenvironment.
Oncogene | 2015
Tapasree Roy Sarkar; Venkata Lokesh Battula; Steven J. Werden; Geraldine V. Vijay; E Q Ramirez-Peña; Joseph H. Taube; Jeffrey T. Chang; Naoyuki Miura; Weston Porter; Nathalie Sphyris; Michael Andreeff; Sendurai A. Mani
The epithelial–mesenchymal transition (EMT) bestows cancer cells with increased stem cell properties and metastatic potential. To date, multiple extracellular stimuli and transcription factors have been shown to regulate EMT. Many of them are not druggable and therefore it is necessary to identify targets, which can be inhibited using small molecules to prevent metastasis. Recently, we identified the ganglioside GD2 as a novel breast cancer stem cell marker. Moreover, we found that GD3 synthase (GD3S)—an enzyme involved in GD2 biosynthesis—is critical for GD2 production and could serve as a potential druggable target for inhibiting tumor initiation and metastasis. Indeed, there is a small molecule known as triptolide that has been shown to inhibit GD3S function. Accordingly, in this manuscript, we demonstrate that the inhibition of GD3S using small hairpin RNA or triptolide compromises the initiation and maintenance of EMT instigated by various signaling pathways, including Snail, Twist and transforming growth factor-β1 as well as the mesenchymal characteristics of claudin-low breast cancer cell lines (SUM159 and MDA-MB-231). Moreover, GD3S is necessary for wound healing, migration, invasion and stem cell properties in vitro. Most importantly, inhibition of GD3S in vivo prevents metastasis in experimental as well as in spontaneous syngeneic wild-type mouse models. We also demonstrate that the transcription factor FOXC2, a central downstream effector of several EMT pathways, directly regulates GD3S expression by binding to its promoter. In clinical specimens, the expression of GD3S correlates with poor prognosis in triple-negative human breast tumors. Moreover, GD3S expression correlates with activation of the c-Met signaling pathway leading to increased stem cell properties and metastatic competence. Collectively, these findings suggest that the GD3S-c-Met axis could serve as an effective target for the treatment of metastatic breast cancers.
Annals of Hematology | 2014
Hongbo Lu; Kensuke Kojima; Venkata Lokesh Battula; Borys Korchin; Yuexi Shi; Ye Chen; Suzanne Spong; Deborah A. Thomas; Hagop M. Kantarjian; Richard B. Lock; Michael Andreeff; Marina Konopleva
Connective tissue growth factor (CTGF/CCN2) is involved in extracellular matrix production, tumor cell proliferation, adhesion, migration, and metastasis. Recent studies have shown that CTGF expression is elevated in precursor B-acute lymphoblastic leukemia (ALL) and that increased expression of CTGF is associated with inferior outcome in B-ALL. In this study, we characterized the functional role and downstream signaling pathways of CTGF in ALL cells. First, we utilized lentiviral shRNA to knockdown CTGF in RS4;11 and REH ALL cells expressing high levels of CTGF mRNA. Silencing of CTGF resulted in significant suppression of leukemia cell growth compared to control vector, which was associated with AKT/mTOR inactivation and increased levels of cyclin-dependent kinase inhibitor p27. CTGF knockdown sensitized ALL cells to vincristine and methotrexate. Treatment with an anti-CTGF monoclonal antibody, FG-3019, significantly prolonged survival of mice injected with primary xenograft B-ALL cells when co-treated with conventional chemotherapy (vincristine, L-asparaginase and dexamethasone). Data suggest that CTGF represents a targetable molecular aberration in B-ALL, and blocking CTGF signaling in conjunction with administration of chemotherapy may represent a novel therapeutic approach for ALL patients.
Oncotarget | 2017
Venkata Lokesh Battula; Khoa Nguyen; Jeff Sun; Mary Kathryn Pitner; Bin Yuan; Chandra Bartholomeusz; Numsen Hail; Michael Andreeff
We have identified that the ganglioside GD2 is a marker for breast cancer stem cells (BCSCs), and that targeting the enzyme GD3 synthase (GD3S, which regulates GD2 biosynthesis) reduces breast tumorigenesis. The pathways regulating GD2 expression, and their anomalous functions in BCSC, are unclear. Proteomic analysis of GD2+ and GD2- cells from breast cancer cell lines revealed the activation of NFκB signaling in GD2+ cells. Dose- and time-dependent suppression of NFκB signaling by the small molecule inhibitor BMS-345541 reduced GD2+ cells by > 90%. Likewise, BMS-345541 inhibited BCSC GD3S expression, mammosphere formation, and cell migration/invasion in vitro. Breast tumor-bearing mice treated with BMS-345541 showed a statistically significant decrease in tumor volume and exhibited prolonged survival compared to control mice, with a median survival of 78 d for the BMS-345541-treated group vs. 58 d for the controls. Moreover, in an experimental metastases model, treatment with BMS-345541 reduced the lung metastases by > 5-fold. These data suggest that GD2 expression and function, and NFκB signaling, are related, and they control BCSCs tumorigenic characteristics. Thus, the suppression of NFκB signaling by BMS-345541 is a potentially important advance in controlling breast cancer growth and metastases.