Venkata R. Machavaram
University of Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Venkata R. Machavaram.
Journal of Composite Materials | 2012
Muhammad S. Irfan; Venkata R. Machavaram; Ramani S. Mahendran; N. Shotton-Gale; Cf Wait; Mark Paget; M. Hudson; Gerard Franklyn Fernando
In the current study, the model, previously developed by Wilson, was reviewed and extended to predict the mechanically induced spreading of E-glass fiber bundles. The widths of the as-received E-glass fiber bundles were increased by 200–250% when subjected to a series of reciprocating motions. A 350–450% increase in the widths of the bundles was observed when the tension was released (tension-release mechanism) and the reciprocating motions repeated. The effect of the number of rods, angles and distances between them, and their relative geometry on the extent of fiber spreading was studied. The forces involved in fiber spreading are discussed using micro-mechanics involved in the fiber spreading.
Journal of Composite Materials | 2013
Surya D. Pandita; Irfan; Venkata R. Machavaram; N. Shotton-Gale; Ramani S. Mahendran; Cf Wait; Mark Paget; Dee Harris; C Leek; Gerard Franklyn Fernando
This is a two-part paper where part 1 presents details of a modified wet-filament winding process. Here, the resin bath was replaced with a resin injection system that impregnated the fibres prior to winding them onto a rotating mandrel. The resin and hardener were stored in separate containers and pumped on-demand via a pair of precision gear-pumps to a static mixer. The mixed resin system was then supplied to a custom-designed resin impregnation unit. The theoretical basis for the design of the resin impregnation unit is presented along with simulations of the various parameters that influence the impregnation time and the degree of impregnation. Part 2 of this series papers presents the experimental data on the performance of the resin impregnation unit and a comparison of the physical and mechanical properties of the tubes manufactured using the conventional and modified wet-filament winding techniques.
Measurement Science and Technology | 2007
Venkata R. Machavaram; R. A. Badcock; Gerard Franklyn Fernando
This paper reports on a technique for fabricating intrinsic fibre Fabry?Perot cavities in fused silica optical fibres. An F2-excimer laser was used to micromachine parallel walled cavities through the diameter of optical fibres. A custom-designed beam delivery and target alignment system was used to enable the production of high aspect-ratio cavities in fibres. The optical response of the micro-cavities ablated in SMF 28 and SM 800 fibres at suitable energy densities showed Fabry?Perot fringes produced as a result of interference of Fresnel reflections at the cavity wall surfaces. The intrinsic fibre Fabry?Perot cavities were characterized using optical and scanning electron microscopy. Preliminary tests have shown that these intrinsic cavities can be used as strain sensors.
Journal of Composite Materials | 2014
Irfan; Venkata R. Machavaram; Rc Murray; Francisco Nieves Bogonez; Cf Wait; Surya D. Pandita; Mark Paget; M. Hudson; Gerard Franklyn Fernando
Fibre-reinforced composites consist of three key components: the reinforcing fibres, the matrix and the interface between the fibre and the matrix. The efficient impregnation of the reinforcing fibre bundle by the matrix is a primary prerequisite for the production of advanced fibre-reinforced composites. This process can be significantly enhanced by spreading the filaments in the reinforcing fibre bundle. The authors previously reported on a manual technique for spreading the filaments in a bundle. This involved subjecting a fibre bundle to a series of reciprocating motions over a rod. The effect of releasing the tension on the bundle was also considered. On the basis of the observations made in the previous study, a mechanised rig was designed, manufactured and optimised to enable the lateral spreading of the filaments in a bundle of E-glass fibres. A Taguchi-based approach was used to optimise the variables on the rig such as the number and configuration of rollers, haul-off speed of the fibre bundle, pre-tension in the bundle and the rotational speed of the roller carrier hub. The maximum degree of fibre spreading achieved for a commercially available 2400 tex E-glass fibre bundle was 250%.
Proceedings of SPIE | 2009
Ramani S. Mahendran; Venkata R. Machavaram; Liwei Wang; Jonathan M. Burns; Dee Harris; Stephen N. Kukureka; Gerard Franklyn Fernando
Whilst considerable progress continues to be made on the design and deployment of fibre optic sensors for chemical process monitoring and structural integrity assessment, the majority of these sensor designs can only impart information on one or two relevant measurands. For example, in the case of chemical process monitoring of advanced fibrereinforced composites involving thermosetting resins, it is generally appreciated that cross-linking kinetics can be influenced by a number of factors including the following: the stoichiometry of the reagents, temperature, surface chemistry of the substrate and presence or absence of contaminants. Thermosetting resins also shrink during the crosslinking process. When thermosets are used and processed above room temperature during the production of fibrereinforced composites, upon cooling back to ambient temperature, residual stress can develop due to the mismatch in thermal expansions between the reinforcing fibres and the matrix. This paper reports on recent progress on the design and demonstration of a novel multi-functional fibre optic sensor that can provide data on (i) temperature, (ii) strain, (iii) refractive index, (iv) transmission infrared spectroscopy and (v) evanescent wave spectroscopy. A unique and attractive feature of this sensor is that a conventional commercially available Fourier transform infrared spectrometer is used to interrogate the sensor. The sensor design is based on an extrinsic fibre Fabry-Perot interferometer.
Proceedings of SPIE | 2009
Shoaib A. Malik; Liwei Wang; Ramani S. Mahendran; Dee Harris; Samuel O. Ojo; Dave Collins; Mark Paget; Surya D. Pandita; Venkata R. Machavaram; Gerard Franklyn Fernando
The focus of this paper is on real-time damage detection in reinforcing fiber bundles and composites using high-speed photography and image analysis. In other words, the end of a reinforcing fiber bundle or composite is imaged and the sequence of fiber fracture is monitored using a high-speed camera. These studies were undertaken using as-received and silane-treated custom-made optical fibers of around 12 μm diameter and E-glass fibers of 15 (±3) μm diameter. The first part of this paper reports on the techniques that were developed to produce void-free test specimens and the procedures used for imaging the end of the fiber bundle and composite during tensile loading. Evanescent wave spectroscopy was used to study the effect of silane treatment on the cross-linking kinetics of an epoxy/amine resin system. Conventional piezo-electric acoustic emission (AE) transducers were used to monitor the acoustic events occurring during the tensile test. The signals from the AE transducers were used to trigger the high-speed camera. The second part of this paper presents details of the image analysis routines that were developed to track the light intensity transmitted through individual fibers during tensile loading. Good correlation was observed between the transmitted light intensity and the AE signals.
Proceedings of SPIE | 2009
Liwei Wang; Venkata R. Machavaram; Ramani S. Mahendran; Dee Harris; Surya D. Pandita; Andrew Tomlin; Eleanor Redmore; Shoaib A. Malik; Gerard Franklyn Fernando
Significant progress has been made in recent years on the design and deployment of optical fibre-based sensors to monitor the cross-linking (cure) reactions in thermosetting resins. In the current study, the following sensor designs were used to study cross-linking reactions of an epoxy/amine resin system: (i) intensity-based Fresnel sensors, (ii) extrinsic fibre Fabry-Perot interferometic (EFPI) sensors, (iii) fibre Bragg grating (FBG) sensors and (iv) sensor designs to enable transmission, reflection and evanescent wave spectroscopy. This paper presents a detailed study on a comparison of the above-mentioned techniques for a commercially available epoxy/amine resin system. Conventional Fourier transform infrared spectroscopy was used as the reference method for obtaining quantitative data on the cross-linking kinetics. The shrinkage of the resin during cross-linking was monitored using EFPI and FBG sensors. This paper also discusses the cross-linking data obtained using optical fibre-based evanescent wave spectroscopy.
Sensors | 2016
Sriram Krishnamurthy; Rodney A. Badcock; Venkata R. Machavaram; Gerard Franklyn Fernando
Residual stresses in fibre reinforced composites can give rise to a number of undesired effects such as loss of dimensional stability and premature fracture. Hence, there is significant merit in developing processing techniques to mitigate the development of residual stresses. However, tracking and quantifying the development of these fabrication-induced stresses in real-time using conventional non-destructive techniques is not straightforward. This article reports on the design and evaluation of a technique for manufacturing pre-stressed composite panels from unidirectional E-glass/epoxy prepregs. Here, the magnitude of the applied pre-stress was monitored using an integrated load-cell. The pre-stressing rig was based on a flat-bed design which enabled autoclave-based processing. A method was developed to end-tab the laminated prepregs prior to pre-stressing. The development of process-induced residual strain was monitored in-situ using embedded optical fibre sensors. Surface-mounted electrical resistance strain gauges were used to measure the strain when the composite was unloaded from the pre-stressing rig at room temperature. Four pre-stress levels were applied prior to processing the laminated preforms in an autoclave. The results showed that the application of a pre-stress of 108 MPa to a unidirectional [0]16 E-glass/913 epoxy preform, reduced the residual strain in the composite from −600 µε (conventional processing without pre-stress) to approximately zero. A good correlation was observed between the data obtained from the surface-mounted electrical resistance strain gauge and the embedded optical fibre sensors. In addition to “neutralising” the residual stresses, superior axial orientation of the reinforcement can be obtained from pre-stressed composites. A subsequent publication will highlight the consequences of pres-stressing on fibre alignment, the tensile, flexural, compressive and fatigue performance of unidirectional E-glass composites.
Proceedings of SPIE | 2009
Dee Harris; Ramani S. Mahendran; D. Brooks; F.A. A. Al-Khodairi; Venkata R. Machavaram; P. Reynolds; Liwei Wang; Surya D. Pandita; Mark Paget; J. Wedderburn; Shoaib A. Malik; S. O. Ojo; Stephen N. Kukureka; Gerard Franklyn Fernando
The authors have demonstrated previously that reinforcing glass fibres can be used as light-guides to facilitate chemical process monitoring and structural integrity assessment of fibre reinforced composites. In the current paper, the authors explore concepts for the development of self-sensing, self-healing and crack-arrestor composites. The first part of the papers presents a brief overview of previously reported technologies for self-sensing, self-healing and crack-arrestor; the advantages and disadvantages of the various technologies are discussed. The second part of this paper present the design concept and performance requirements for the self-sensing, self-healing and crack-arrestor composites. The final part of the paper presents preliminary results on the manufacture and evaluation of this class of composite.
The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring | 2008
Ramani S. Mahendran; Rongsheng Chen; Liwei Wang; Surya D. Pandita; Venkata R. Machavaram; Stephen N. Kukureka; Gerard Franklyn Fernando
It is generally appreciated that the ingress of moisture in composites can have adverse effects on matrix-dominated properties such as the glass transition temperature and compressive mechanical properties. Moisture ingress in composites can also lead to swelling and blistering. A number of excellent studies have been reported on the detection, modelling and effects of moisture ingress on the properties of thermosetting resins (matrix) and composites. However, it is generally taken for granted that the quality of the resin and the processing conditions used to cross-link the resin are identical. Given the recent advances in the design and deployment of optical-fibre sensors in composites, it is now possible to use the same sensor to facilitate in-situ cure monitoring and structural health monitoring (after processing). This paper will present recent developments in the design of low-cost fibre-optic sensor systems for in-situ chemical process monitoring and the detection of moisture ingress after curing. The cure kinetics derived from three fibre optic sensor designs is presented as well as those obtained from evanescent-wave spectroscopy using E-glass fibres. After conducting the in-situ cure monitoring experiments, one of the fibre-optic sensor designs was selected and the samples (with the embedded sensors) were dried to constant mass at 50°C then transferred to water baths maintained at 70, 50, and 30 °C. The diffusion kinetics for the samples was determined using samples without and with embedded optical-fibre sensors. The effect of moisture ingress in the resin was also assessed using dynamic mechanical thermal analysis (DMTA), transmission infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Preliminary results are also presented to demonstrate that the reinforcing fibres in E-glass composites can be used to track the cross-linking kinetics of a commercial epoxy/amine resin is presented.