Venkata Ramireddy Narala
Yogi Vemana University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Venkata Ramireddy Narala.
Molecular Cancer Therapeutics | 2010
Ajaya Kumar Reka; Himabindu Kurapati; Venkata Ramireddy Narala; Guido T. Bommer; Jun Chen; Theodore J. Standiford; Venkateshwar G. Keshamouni
Epithelial-mesenchymal transition (EMT) was shown to confer tumor cells with abilities essential for metastasis, including migratory phenotype, invasiveness, resistance to apoptosis, evading immune surveillance, and tumor stem cell traits. Therefore, inhibition of EMT can be an important therapeutic strategy to inhibit tumor metastasis. Here, we show that activation of peroxisome proliferator-activated receptor γ (PPAR-γ) inhibits transforming growth factor β (TGF-β)-induced EMT in lung cancer cells and prevents metastasis by antagonizing Smad3 function. Activation of PPAR-γ by synthetic ligands (troglitazone and rosiglitazone) or by a constitutively active form of PPAR-γ prevents TGF-β–induced loss of E-cadherin expression and inhibits the induction of mesenchymal markers (vimentin, N-cadherin, fibronectin) and matrix metalloproteases. Consistently, activation of PPAR-γ also inhibited EMT-induced migration and invasion of lung cancer cells. Furthermore, effects of PPAR-γ ligands were attenuated by siRNA-mediated knockdown of PPAR-γ, indicating that the ligand-induced responses are PPAR-γ dependent. Selective knockdown of Smad2 and Smad3 by siRNA showed that TGF-β–induced EMT is Smad3 dependent in lung cancer cells. Activation of PPAR-γ inhibits TGF-β–induced Smad transcriptional activity but had no effect on the phosphorylation or nuclear translocation of Smads. Consistently, PPAR-γ activation prevented TGF-β–induced transcriptional repression of E-cadherin promoter and inhibited transcriptional activation of N-cadherin promoter. Finally, treatment of mice with troglitazone or knockdown of Smad3 in tumor cells significantly inhibited TGF-β–induced experimental metastasis in SCID-Beige mice. Together, with the low toxicity profile of PPAR-γ ligands, our data show that these ligands may serve as potential therapeutic agents to inhibit metastasis. Mol Cancer Ther; 9(12); 3221–32. ©2010 AACR.
Journal of Biological Chemistry | 2010
Venkata Ramireddy Narala; Ravi K. Adapala; Madathilparambil V. Suresh; Thomas G. Brock; Marc Peters-Golden; Raju C. Reddy
Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription factors that play central roles in metabolism and inflammation. Although a variety of compounds have been shown to activate PPARs, identification of physiologically relevant ligands has proven difficult. In silico studies of lipid derivatives reported here identify specific 5-lipoxygenase products as candidate physiologically relevant PPAR-α activators. Subsequent studies show both in vitro and in a murine model of inflammation that 5-lipoxygenase stimulation induces PPAR-α signaling and that this results specifically from production of the inflammatory mediator and chemoattractant leukotriene B4 (LTB4). Activation of PPAR-α is a direct effect of intracellularly generated LTB4 binding to the nuclear receptor and not of secreted LTB4 acting via its cell-surface receptors. Activation of PPAR-α reduces secretion of LTB4 by stimulating degradation of this fatty acid derivative. We also show that the LTB4 precursors leukotriene A4 (LTA4) and 5-hydroperoxyeicosatetrenoic acid (5-HPETE) activate PPAR-α but have no significant endogenous effect independent of conversion to LTB4. We conclude that LTB4 is a physiologically relevant PPAR-α activator in cells of the immune system. This, together with previous findings, demonstrates that different types of lipids serve as endogenous PPAR-α ligands, with the relevant ligand varying between functionally different cell types. Our results also support the suggestion that regulation of inflammation may involve balancing proinflammatory effects of LTB4, exerted through cell-surface receptors, and anti-inflammatory effects exerted through PPAR-α activation.
Blood | 2008
Raju C. Reddy; Venkata Ramireddy Narala; Venkateshwar G. Keshamouni; Jami E. Milam; Michael W. Newstead; Theodore J. Standiford
Neutrophils (polymorphonuclear leukocytes [PMNs]) are critical to the immune response, including clearance of infectious pathogens. Sepsis is associated with impaired PMN function, including chemotaxis. PMNs express peroxisome proliferator-activated receptor-gamma (PPAR-gamma), a ligand-activated nuclear transcription factor involved in immune and inflammatory regulation. The role of PPAR-gamma in PMN responses, however, is not well characterized. We report that freshly isolated human PMNs constitutively express PPAR-gamma, which is up-regulated by the sepsis-induced cytokines TNF-alpha and IL-4. PMN chemotactic responses to formylmethionyl-leucyl-phenylalanine (fMLP) and IL-8 were dose-dependently inhibited by treatment with the PPAR-gamma ligands troglitazone and 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) and by transfection of PMN-like HL-60 cells with a constitutively active PPAR-gamma construct. Inhibition of chemotaxis by PPAR-gamma ligands correlated with decreases in extracellular signal-regulated kinase-1 and -2 activation, actin polymerization, and adherence to a fibrinogen substrate. Furthermore, PMN expression of PPAR-gamma was increased in sepsis patients and mice with either of 2 models of sepsis. Finally, treatment with the PPAR-gamma antagonist GW9662 significantly reversed the inhibition of PMN chemotaxis and increased peritoneal PMN recruitment in murine sepsis. This study indicates that PPAR-gamma activation is involved in PMN chemotactic responses in vitro and may play a role in the migration of these cells in vivo.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2010
Monica R. Smith; Srinivasa R. Gangireddy; Venkata Ramireddy Narala; Cory M. Hogaboam; Theodore J. Standiford; Paul J. Christensen; Anand K. Kondapi; Raju C. Reddy
Idiopathic pulmonary fibrosis (IPF) is a progressive and typically fatal lung disease for which no effective therapy has been identified. The disease is characterized by excessive collagen deposition, possibly in response to dysregulated wound healing. Mediators normally involved in would healing induce proliferation of fibroblasts and their differentiation to myofibroblasts that actively secrete collagen. Curcumin, a polyphenolic compound from turmeric, has been shown to exert a variety of biological effects. Effects on IPF and associated cell types remain unclear, however. We accordingly tested the ability of curcumin to inhibit proliferation and differentiation to myofibroblasts by human lung fibroblasts, including those from IPF patients. To further examine the potential usefulness of curcumin in IPF, we examined its ability to reduce fibrosis in bleomycin-treated mice. We show that curcumin effectively reduces profibrotic effects in both normal and IPF fibroblasts in vitro and that this reduction is accompanied by inhibition of key steps in the transforming growth factor-β (TGF-β) signaling pathway. In vivo, oral curcumin treatment showed no effect on important measures of bleomycin-induced injury in mice, whereas intraperitoneal curcumin administration effectively inhibited inflammation and collagen deposition along with a trend toward improved survival. Intraperitoneal curcumin reduced fibrotic progression even when administered after the acute bleomycin-induced inflammation had subsided. These results encourage further research on alternative formulations and routes of administration for this potentially attractive IPF therapy.
Respiratory Research | 2007
Venkata Ramireddy Narala; Rajesh Ranga; Monica R. Smith; Aaron A. Berlin; Theodore J. Standiford; Nicholas W. Lukacs; Raju C. Reddy
BackgroundWhile glucocorticoids are currently the most effective therapy for asthma, associated side effects limit enthusiasm for their use. Peroxisome proliferator-activated receptor-γ (PPAR-γ) activators include the synthetic thiazolidinediones (TZDs) which exhibit anti-inflammatory effects that suggest usefulness in diseases such as asthma. How the ability of TZDs to modulate the asthmatic response compares to that of glucocorticoids remains unclear, however, because these two nuclear receptor agonists have never been studied concurrently. Additionally, effects of PPAR-γ agonists have never been examined in a model involving an allergen commonly associated with human asthma.MethodsWe compared the effectiveness of the PPAR-γ agonist pioglitazone (PIO) to the established effectiveness of a glucocorticoid receptor agonist, dexamethasone (DEX), in a murine model of asthma induced by cockroach allergen (CRA). After sensitization to CRA and airway localization by intranasal instillation of the allergen, Balb/c mice were challenged twice at 48-h intervals with intratracheal CRA. Either PIO (25 mg/kg/d), DEX (1 mg/kg/d), or vehicle was administered throughout the period of airway CRA exposure.ResultsPIO and DEX demonstrated similar abilities to reduce airway hyperresponsiveness, pulmonary recruitment of inflammatory cells, serum IgE, and lung levels of IL-4, IL-5, TNF-α, TGF-β, RANTES, eotaxin, MIP3-α, Gob-5, and Muc5-ac. Likewise, intratracheal administration of an adenovirus containing a constitutively active PPAR-γ expression construct blocked CRA induction of Gob-5 and Muc5-ac.ConclusionGiven the potent effectiveness shown by PIO, we conclude that PPAR-γ agonists deserve investigation as potential therapies for human asthma.
Inflammation Research | 2015
Firdose Begum Shaik; Durbaka V. R. Prasad; Venkata Ramireddy Narala
ObjectiveThe aim of this paper is to review the developments of farnesoid X receptor (FXR) biology, its ligands, and various functions, in particular we discuss the anti-inflammatory and anti-fibrotic role in chronic inflammatory diseases.IntroductionFXR is a ligand-dependent transcription factor belonging to the nuclear hormone receptor superfamily. The accrued data have shown that the FXR plays important roles not only in bile acid, lipid metabolism, and carbohydrate homeostasis, but also in inflammatory responses. The anti-inflammatory and anti-fibrotic effects of FXR on chronic inflammatory diseases are not well documented.MethodsA literature survey was performed using PubMed database search to gather complete information regarding FXR and its role in inflammation.Results and discussionFXR is highly expressed in liver, intestine, kidney and adrenals, but with lower expression in fat tissue, heart and recently it has been found to express in lungs too. Primary bile acids, cholic acid and chenodeoxycholic acid are the natural endogenous ligands for FXR. GW4064 and 6α-ethyl-chenodeoxycholic acid are the synthetic high-affinity agonists. An exhaustive literature survey revealed that FXR acts as a key metabolic regulator and potential drug target for many metabolic syndromes that include chronic inflammatory diseases.
International Immunopharmacology | 2014
Venkata Ramireddy Narala; Parasuraman Aiya Subramani; Vydyanath R. Narasimha; Firdose Begum Shaik; Kalpana Panati
Nitrated fatty acids (NFAs), thought to be produced by nonenzymatic reactions of endogenous nitric oxide (NO) with naturally present unsaturated fatty acids, have recently been identified as one of the largest single pools of biologically active NO derivatives in human plasma. As the biological role of NFAs is unknown, initial in vitro studies have shown them to be potent suppressors of inflammatory responses. The aim of the study was to collect all the literature on NFAs and its interactions with peroxisome proliferator-activated receptor gamma (PPAR-γ) and review in detail the anti-inflammatory properties of PPAR-γ interceded by NFAs. A literature survey was performed using PubMed and ScienceDirect to gather complete information on NFAs and their interactions with PPAR-γ. An exhaustive literature survey revealed that NFAs found in human plasma and urine comprises a class of cell signaling mediators that can activate PPAR-γ within its physiological concentration. NFAs exhibit anti-inflammatory and anti-fibrotic effects through PPAR-γ activation in various in vitro models tested. Besides its role in inflammation other properties of NFAs such as inhibition of enzymes, inducer of gene expression, etc., were discussed. NFAs are good electrophiles with pleiotropic biological activities. Hence NFAs can be treated as potent drug candidates.
Endocrine‚ Metabolic & Immune Disorders-Drug Targets | 2013
Parasuraman Aiya Subramani; Madhava C. Reddy; Venkata Ramireddy Narala
Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a nuclear transcription factor which is involved in the differentiation of fibroblasts to adipocytes in vitro. PPAR-γ also plays a pivotal role in inflammation and macrophage activation. Furthermore, type 2 diabetes mellitus (T2DM), a condition in which an individuals ability to respond to insulin is lowered, is treated by drugs called thiazolidinediones (TZDs) that are known to activated PPAR-γ, thus augmenting insulin signaling and glucose uptake by adipose tissue. Unfortunately, these otherwise effective drugs are responsible for side effects such as obesity and cardiovascular diseases. The ligand-binding ability of PPAR-γ is different from other nuclear receptors since it can bind to a wide variety of ligands. Although a number of compounds have been shown to activate PPAR-γ, knowledge of its endogenous ligands and their physiological functions is lacking. The known ligands were either ambiguous or found to produce ill effects in vivo. In this review we discuss the structure and functions of PPAR-γ, ligands discovered so far, and focus on the importance of identification of physiologically relevant endogenous ligands.
Nutrition and Cancer | 2017
Parasuraman Aiya Subramani; Kalpana Panati; Venkata Ramireddy Narala
ABSTRACT Cancer is one of the leading causes of death worldwide. Curcumin is a well-established anticancer agent in vitro but its efficacy is yet to be proven in clinical trials. Poor bioavailability of curcumin is the principal reason behind the lack of efficiency of curcumin in clinical trials. Many studies prove that the bioavailability of curcumin can be improved by administering it through nanoparticle drug carriers. This review focuses on the efforts made in the field of nanotechnology to improve the bioavailability of curcumin. Nanotechnologies of curcumin come in various shapes and sizes. The simplest curcumin nanoparticle that increased the bioavailability of curcumin is the curcumin–metal complex. On the other hand, we have intricate thermoresponsive nanoparticles that can release curcumin upon stimulation (analogous to a remote control). Future research required for developing potent curcumin nanoparticles is also discussed.
Biochemical and Biophysical Research Communications | 2015
Firdose Begum Shaik; Kalpana Panati; Vydyanath R. Narasimha; Venkata Ramireddy Narala
Asthma is a complex highly prevalent airway disease that is a major public health problem for which current treatment options are inadequate. Recently, farnesoid X receptor (FXR) has been shown to exert anti-inflammatory actions in various disease conditions, but there have been no reported investigations of Chenodeoxycholic acid (CDCA), a natural FXR agonist, in allergic airway inflammation. To test the CDCA effectiveness in airway inflammation, ovalbumin (OVA)-induced acute murine asthma model was established. We found that lung tissue express FXR and CDCA administration reduced the severity of the murine allergic airway disease as assessed by pathological and molecular markers associated with the disease. CDCA treatment resulted in fewer infiltrations of cells into the airspace and peribronchial areas, and decreased goblet cell hyperplasia, mucus secretion and serum IgE levels which was increased in mice with OVA-induced allergic asthma. The CDCA treatment further blocked the secretion of TH2 cytokines (IL-4, IL-5 and IL-13) and proinflammatory cytokine TNF-α indicate that the FXR and its agonists may have potential for treating allergic asthma.