Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Venkata S. Mattay is active.

Publication


Featured researches published by Venkata S. Mattay.


Nature Neuroscience | 2005

5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression

Lukas Pezawas; Andreas Meyer-Lindenberg; Emily M. Drabant; Beth A. Verchinski; Karen E. Munoz; Bhaskar Kolachana; Michael F. Egan; Venkata S. Mattay; Ahmad R. Hariri; Daniel R. Weinberger

Carriers of the short allele of a functional 5′ promoter polymorphism of the serotonin transporter gene have increased anxiety-related temperamental traits, increased amygdala reactivity and elevated risk of depression. Here, we used multimodal neuroimaging in a large sample of healthy human subjects to elucidate neural mechanisms underlying this complex genetic association. Morphometrical analyses showed reduced gray matter volume in short-allele carriers in limbic regions critical for processing of negative emotion, particularly perigenual cingulate and amygdala. Functional analysis of those regions during perceptual processing of fearful stimuli demonstrated tight coupling as a feedback circuit implicated in the extinction of negative affect. Short-allele carriers showed relative uncoupling of this circuit. Furthermore, the magnitude of coupling inversely predicted almost 30% of variation in temperamental anxiety. These genotype-related alterations in anatomy and function of an amygdala-cingulate feedback circuit critical for emotion regulation implicate a developmental, systems-level mechanism underlying normal emotional reactivity and genetic susceptibility for depression.


The Journal of Neuroscience | 2005

Oxytocin Modulates Neural Circuitry for Social Cognition and Fear in Humans

Peter Kirsch; Christine Esslinger; Qiang Chen; Daniela Mier; Stefanie Lis; Sarina Siddhanti; Harald Gruppe; Venkata S. Mattay; Bernd Gallhofer; Andreas Meyer-Lindenberg

In non-human mammals, the neuropeptide oxytocin is a key mediator of complex emotional and social behaviors, including attachment, social recognition, and aggression. Oxytocin reduces anxiety and impacts on fear conditioning and extinction. Recently, oxytocin administration in humans was shown to increase trust, suggesting involvement of the amygdala, a central component of the neurocircuitry of fear and social cognition that has been linked to trust and highly expresses oxytocin receptors in many mammals. However, no human data on the effects of this peptide on brain function were available. Here, we show that human amygdala function is strongly modulated by oxytocin. We used functional magnetic resonance imaging to image amygdala activation by fear-inducing visual stimuli in 15 healthy males after double-blind crossover intranasal application of placebo or oxytocin. Compared with placebo, oxytocin potently reduced activation of the amygdala and reduced coupling of the amygdala to brainstem regions implicated in autonomic and behavioral manifestations of fear. Our results indicate a neural mechanism for the effects of oxytocin in social cognition in the human brain and provide a methodology and rationale for exploring therapeutic strategies in disorders in which abnormal amygdala function has been implicated, such as social phobia or autism.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine.

Venkata S. Mattay; Terry E. Goldberg; Francesco Fera; Ahmad R. Hariri; Alessandro Tessitore; Michael F. Egan; Bhaskar Kolachana; Joseph H. Callicott; Daniel R. Weinberger

Monamines subserve many critical roles in the brain, and monoaminergic drugs such as amphetamine have a long history in the treatment of neuropsychiatric disorders and also as a substance of abuse. The clinical effects of amphetamine are quite variable, from positive effects on mood and cognition in some individuals, to negative responses in others, perhaps related to individual variations in monaminergic function and monoamine system genes. We explored the effect of a functional polymorphism (val158-met) in the catechol O-methyltransferase gene, which has been shown to modulate prefrontal dopamine in animals and prefrontal cortical function in humans, on the modulatory actions of amphetamine on the prefrontal cortex. Amphetamine enhanced the efficiency of prefrontal cortex function assayed with functional MRI during a working memory task in subjects with the high enzyme activity val/val genotype, who presumably have relatively less prefrontal synaptic dopamine, at all levels of task difficulty. In contrast, in subjects with the low activity met/met genotype who tend to have superior baseline prefrontal function, the drug had no effect on cortical efficiency at low-to-moderate working memory load and caused deterioration at high working memory load. These data illustrate an application of functional neuroimaging in pharmacogenomics and extend basic evidence of an inverted-“U” functional-response curve to increasing dopamine signaling in the prefrontal cortex. Further, individuals with the met/met catechol O-methyltransferase genotype appear to be at increased risk for an adverse response to amphetamine.


The Journal of Neuroscience | 2008

Hierarchical Organization of Human Cortical Networks in Health and Schizophrenia

Danielle S. Bassett; Edward T. Bullmore; Beth A. Verchinski; Venkata S. Mattay; Daniel R. Weinberger; Andreas Meyer-Lindenberg

The complex organization of connectivity in the human brain is incompletely understood. Recently, topological measures based on graph theory have provided a new approach to quantify large-scale cortical networks. These methods have been applied to anatomical connectivity data on nonhuman species, and cortical networks have been shown to have small-world topology, associated with high local and global efficiency of information transfer. Anatomical networks derived from cortical thickness measurements have shown the same organizational properties of the healthy human brain, consistent with similar results reported in functional networks derived from resting state functional magnetic resonance imaging (MRI) and magnetoencephalographic data. Here we show, using anatomical networks derived from analysis of inter-regional covariation of gray matter volume in MRI data on 259 healthy volunteers, that classical divisions of cortex (multimodal, unimodal, and transmodal) have some distinct topological attributes. Although all cortical divisions shared nonrandom properties of small-worldness and efficient wiring (short mean Euclidean distance between connected regions), the multimodal network had a hierarchical organization, dominated by frontal hubs with low clustering, whereas the transmodal network was assortative. Moreover, in a sample of 203 people with schizophrenia, multimodal network organization was abnormal, as indicated by reduced hierarchy, the loss of frontal and the emergence of nonfrontal hubs, and increased connection distance. We propose that the topological differences between divisions of normal cortex may represent the outcome of different growth processes for multimodal and transmodal networks and that neurodevelopmental abnormalities in schizophrenia specifically impact multimodal cortical organization.


The Journal of Neuroscience | 2004

The Brain-Derived Neurotrophic Factor val66met Polymorphism and Variation in Human Cortical Morphology

Lukas Pezawas; Beth A. Verchinski; Venkata S. Mattay; Joseph H. Callicott; Bhaskar Kolachana; Richard E. Straub; Michael F. Egan; Andreas Meyer-Lindenberg; Daniel R. Weinberger

A variation in the BDNF gene (val66met) affects the function of BDNF in neurons, predicts variation in human memory, and is associated with several neurological and psychiatric disorders. Here, we show that, in magnetic resonance imaging scans of a large sample of normal individuals, this polymorphism affects the anatomy of the hippocampus and prefrontal cortex, identifying a genetic mechanism of variation in brain morphology related to learning and memory.


Biological Psychiatry | 2003

Neocortical modulation of the amygdala response to fearful stimuli.

Ahmad R. Hariri; Venkata S. Mattay; Alessandro Tessitore; Francesco Fera; Daniel R. Weinberger

BACKGROUND The cortical circuitry involved in conscious cognitive processes and the subcortical circuitry involved in fear responses have been extensively studied with neuroimaging, but their interactions remain largely unexplored. A recent functional magnetic resonance imaging (fMRI) study demonstrated that the engagement of the right prefrontal cortex during the cognitive evaluation of angry and fearful facial expressions is associated with an attenuation of the response of the amygdala to these same stimuli, providing evidence for a functional neural network for emotional regulation. METHODS In the current study, we have explored the generalizability of this functional network by using threatening and fearful non-face stimuli derived from the International Affective Picture System (IAPS), as well as the influence of this network on peripheral autonomic responses. RESULTS Similar to the earlier findings with facial expressions, blood oxygen level dependent fMRI revealed that whereas perceptual processing of IAPS stimuli was associated with a bilateral amygdala response, cognitive evaluation of these same stimuli was associated with attenuation of this amygdala response and a correlated increase in response of the right prefrontal cortex and the anterior cingulate cortex. Moreover, this pattern was reflected in changes in skin conductance. CONCLUSIONS The current results further implicate the importance of neocortical regions, including the prefrontal and anterior cingulate cortices, in regulating emotional responses mediated by the amygdala through conscious evaluation and appraisal.


Biological Psychiatry | 2001

Prefrontal neurons and the genetics of schizophrenia

Daniel R. Weinberger; Michael F. Egan; Alessandro Bertolino; Joseph H. Callicott; Venkata S. Mattay; Barbara K. Lipska; Karen Faith Berman; Terry E. Goldberg

This article reviews prefrontal cortical biology as it relates to pathophysiology and genetic risk for schizophrenia. Studies of prefrontal neurocognition and functional neuroimaging of prefrontal information processing consistently reveal abnormalities in patients with schizophrenia. Abnormalities of prefrontal information processing also are found in unaffected individuals who are genetically at risk for schizophrenia, suggesting that genetic polymorphisms affecting prefrontal function may be susceptibility alleles for schizophrenia. One such candidate is a functional polymorphism in the catechol-o-methyl transferase (COMT) gene that markedly affects enzyme activity and that appears to uniquely impact prefrontal dopamine. The COMT genotype predicts performance on prefrontal executive cognition and working memory tasks. Functional magnetic resonance imaging confirms that COMT genotype affects prefrontal physiology during working memory. Family-based association studies have revealed excessive transmission to schizophrenic offspring of the allele (val) related to poorer prefrontal function. These various data provide convergent evidence that the COMT val allele increases risk for schizophrenia by virtue of its effect on dopamine-mediated prefrontal information processing-the first plausible mechanism for a genetic effect on normal human cognition and risk for mental illness.


NeuroImage | 2002

The Amygdala Response to Emotional Stimuli: A Comparison of Faces and Scenes

Ahmad R. Hariri; Alessandro Tessitore; Venkata S. Mattay; Francesco Fera; Daniel R. Weinberger

As a central fear processor of the brain, the amygdala initiates a cascade of critical physiological and behavioral responses. Neuroimaging studies have shown that the human amygdala responds not only to fearful and angry facial expressions but also to fearful and threatening scenes such as attacks, explosions, and mutilations. Given the relative importance of facial expressions in adaptive social behavior, we hypothesized that the human amygdala would exhibit a stronger response to angry and fearful facial expressions in comparison to other fearful and threatening stimuli. Twelve subjects completed two tasks while undergoing fMRI: matching angry or fearful facial expressions, and matching scenes depicting fearful or threatening situations derived from the International Affective Picture System (IAPS). While there was an amygdala response to both facial expressions and IAPS stimuli, direct comparison revealed that the amygdala response to facial expressions was significantly greater than that to IAPS stimuli. Autonomic reactivity, measured by skin conductance responses, was also greater to facial expressions. These results suggest that the human amygdala shows a stronger response to affective facial expressions than to scenes, a bias that should be considered in the design of experimental paradigms interested in probing amygdala function.


Neurology | 2002

Neurophysiological correlates of age-related changes in human motor function

Venkata S. Mattay; Francesco Fera; Alessandro Tessitore; Ahmad R. Hariri; Sumitra Das; Joseph H. Callicott; Daniel R. Weinberger

BackgroundThere are well-defined and characteristic age-related deficits in motor abilities that may reflect structural and chemical changes in the aging brain. ObjectiveTo delineate age-related changes in the physiology of brain systems subserving simple motor behavior. MethodsTen strongly right-handed young (<35 years of age) and 12 strongly right-handed elderly (>50 years of age) subjects with no evidence of cognitive or motor deficits participated in the study. Whole-brain functional imaging was performed on a 1.5-T MRI scanner using a spiral pulse sequence while the subjects performed a visually paced “button-press” motor task with their dominant right hand alternating with a rest state. ResultsAlthough the groups did not differ in accuracy, there was an increase in reaction time in the elderly subjects (mean score ± SD, young subjects = 547 ± 97 ms, elderly subjects = 794 ± 280 ms, p < 0.03). There was a greater extent of activation in the contralateral sensorimotor cortex, lateral premotor area, supplementary motor area, and ipsilateral cerebellum in the elderly subjects relative to the young subjects (p < 0.001). Additional areas of activation, absent in the young subjects, were seen in the ipsilateral sensorimotor cortex, putamen (left > right), and contralateral cerebellum of the elderly subjects. ConclusionsThe results of this study show that elderly subjects recruit additional cortical and subcortical areas even for the performance of a simple motor task. These changes may represent compensatory mechanisms invoked by the aging brain, such as reorganization and redistribution of functional networks to compensate for age-related structural and neurochemical changes.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function

Heike Tost; Bhaskar Kolachana; Shabnam Hakimi; Herve Lemaitre; Beth A. Verchinski; Venkata S. Mattay; Daniel R. Weinberger; Andreas Meyer-Lindenberg

The evolutionarily highly conserved neuropeptide oxytocin is a key mediator of social and emotional behavior in mammals, including humans. A common variant (rs53576) in the oxytocin receptor gene (OXTR) has been implicated in social-behavioral phenotypes, such as maternal sensitivity and empathy, and with neuropsychiatric disorders associated with social impairment, but the intermediate neural mechanisms are unknown. Here, we used multimodal neuroimaging in a large sample of healthy human subjects to identify structural and functional alterations in OXTR risk allele carriers and their link to temperament. Activation and interregional coupling of the amygdala during the processing of emotionally salient social cues was significantly affected by genotype. In addition, evidence for structural alterations in key oxytocinergic regions emerged, particularly in the hypothalamus. These neural characteristics predicted lower levels of reward dependence, specifically in male risk allele carriers. Our findings identify sex-dependent mechanisms impacting the structure and function of hypothalamic-limbic circuits that are of potential clinical and translational significance.

Collaboration


Dive into the Venkata S. Mattay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph H. Callicott

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terry E. Goldberg

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bhaskar Kolachana

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Joseph A. Frank

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Karen Faith Berman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge