Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Venkatadri Kolla is active.

Publication


Featured researches published by Venkatadri Kolla.


Clinical Cancer Research | 2009

Trk Receptor Expression and Inhibition in Neuroblastomas

Garrett M. Brodeur; Jane E. Minturn; Ruth Ho; Anisha M. Simpson; Radhika Iyer; Carly R. Varela; Jennifer E. Light; Venkatadri Kolla; Audrey E. Evans

Neuroblastoma, the most common and deadly solid tumor in children, exhibits heterogeneous clinical behavior, from spontaneous regression to relentless progression. Current evidence suggests that the TRK family of neurotrophin receptors plays a critical role in these diverse behaviors. Neuroblastomas expressing TrkA are biologically favorable and prone to spontaneous regression or differentiation, depending on the absence or presence of its ligand (NGF) in the microenvironment. In contrast, TrkB-expressing tumors frequently have MYCN amplification and are very aggressive and often fatal tumors. These tumors also express the TrkB ligand (BDNF), resulting in an autocrine or paracrine survival pathway. Exposure to BDNF promotes survival, drug resistance, and angiogenesis of TrkB-expressing tumors. Here we review the role of Trks in normal development, the different functions of Trk isoforms, and the major Trk signaling pathways. We also review the roles these receptors play in the heterogeneous biological and clinical behavior of neuroblastomas, and the activation of Trk receptors in other cancers. Finally we address the progress that has been made in developing targeted therapy with Trk-selective inhibitors to treat neuroblastomas and other tumors with activated Trk expression.


Journal of the National Cancer Institute | 2008

CHD5, a Tumor Suppressor Gene Deleted From 1p36.31 in Neuroblastomas

Tomoyuki Fujita; Jun Igarashi; Erin R. Okawa; Takahiro Gotoh; Jayanthi Manne; Venkatadri Kolla; Jessica S. Kim; Huaqing Zhao; Bruce R. Pawel; Wendy B. London; John M. Maris; Peter S. White; Garrett M. Brodeur

Background Neuroblastomas are characterized by hemizygous 1p deletions, suggesting that a tumor suppressor gene resides in this region. We previously mapped the smallest region of consistent deletion to a 2-Mb region of 1p36.31 that encodes 23 genes. Based on mutation analysis, expression pattern, and putative function, we identified CHD5 as the best tumor suppressor gene candidate. Methods We determined the methylation status of the CHD5 gene promoter in NLF and IMR5 (with 1p deletion) and SK-N-SH and SK-N-FI neuroblastoma cell lines using methylation-specific sequencing and measured CHD5 mRNA expression by reverse transcription polymerase chain reaction in cells treated with or without 5-aza-2-deoxycytidine, an inhibitor of DNA methylation. We transfected the cells with CHD5 and antisense (AS) CHD5 DNA to assess the effect of CHD5 overexpression and suppression, respectively, on colony formation in soft agar and growth of xenograft tumors in athymic mice. We also analyzed the association of CDH5 expression with outcomes of 99 neuroblastoma patients. Statistical tests were two-sided. Results CHD5 expression was very low or absent in neuroblastoma cell lines. The CHD5 promoter was highly methylated in NLF and IMR5 lines, and CHD5 expression increased after treatment with 5-aza-2-deoxycytidine. Clonogenicity and tumor growth were abrogated in NLF and IMR5 cells overexpressing CHD5 compared with antisense CHD5 (clonogenicity: mean no. of colonies per plate, NLF-CHD5, 43 colonies, 95% confidence interval [CI] = 35 to 51 colonies, vs NLF-CHD5-AS, 74 colonies, 95% CI = 62 to 86 colonies, P < .001; IMR5-CHD5, 11 colonies, 95% CI = 2 to 20 colonies, vs IMR5-CHD5-AS, 39 colonies, 95% CI = 17 to 60 colonies, P = .01; tumor growth, n = 10 mice per group: mean tumor size at 5 weeks, NLF-CHD5, 0.36 cm3, 95% CI = 0.17 to 0.44 cm3, vs NLF-CHD5-AS, 1.65 cm3, 95% CI = 0.83 to 2.46 cm3, P = .002; IMR5-CHD5, 0.28 cm3, 95% CI = 0.18 to 0.38 cm3, vs IMR5-CHD5-AS, 1.15 cm3, 95% CI = 0.43 to 1.87 cm3; P = .01). High CHD5 expression was strongly associated with favorable event-free and overall survival (P < .001), even after correction for MYCN amplification and 1p deletion (P = .027). Conclusions CHD5 is the strongest candidate tumor suppressor gene that is deleted from 1p36.31 in neuroblastomas, and inactivation of the second allele may occur by an epigenetic mechanism.


Clinical Cancer Research | 2012

Mechanisms of CHD5 Inactivation in Neuroblastomas

Hiroshi Koyama; Tiangang Zhuang; Jennifer E. Light; Venkatadri Kolla; Mayumi Higashi; Patrick McGrady; Wendy B. London; Garrett M. Brodeur

Purpose: Neuroblastomas (NBs) have genomic, biological, and clinical heterogeneity. High-risk NBs are characterized by several genomic changes, including MYCN amplification and 1p36 deletion. We identified the chromatin-remodeling gene CHD5 as a tumor suppressor gene that maps to 1p36.31. Low or absent CHD5 expression is associated with a 1p36 deletion and an unfavorable outcome, but the mechanisms of CHD5 inactivation in NBs are unknown. Experimental Design: We examined (i) the CHD5 sequence in 188 high-risk NBs investigated through the TARGET initiative, (ii) the methylation status of the CHD5 promoter in 108 NBs with or without 1p36 deletion and/or MYCN amplification, and (iii) mRNA expression of CHD5 and MYCN in 814 representative NBs using TaqMan low-density array microfluidic cards. Results: We found no examples of somatically acquired CHD5 mutations, even in cases with 1p36 deletion, indicating that homozygous genomic inactivation is rare. Methylation of the CHD5 promoter was common in the high-risk tumors, and it was generally associated with both 1p deletion and MYCN amplification. High CHD5 expression was a powerful predictor of favorable outcome, and it showed prognostic value even in multivariable analysis after adjusting for MYCN amplification, 1p36 deletion, and/or 11q deletion. Conclusions: We conclude that (i) somatically acquired CHD5 mutations are rare in primary NBs, so inactivation probably occurs by deletion and epigenetic silencing; (ii) CHD5 expression and promoter methylation are associated with MYCN amplification, suggesting a possible interaction between these 2 genes; and (iii) high CHD5 expression is strongly correlated with favorable clinical/biological features and outcome. Clin Cancer Res; 18(6); 1588–97. ©2012 AACR.


Mechanisms of Development | 2014

CHD5 is required for spermiogenesis and chromatin condensation

Tiangang Zhuang; Rex A. Hess; Venkatadri Kolla; Mayumi Higashi; Tobias Raabe; Garrett M. Brodeur

Haploid spermatids undergo extensive cellular, molecular and morphological changes to form spermatozoa during spermiogenesis. Abnormalities in these steps can lead to serious male fertility problems, from oligospermia to complete azoospermia. CHD5 is a chromatin-remodeling nuclear protein expressed almost exclusively in the brain and testis. Male Chd5 knockout (KO) mice have deregulated spermatogenesis, characterized by immature sloughing of spermatids, spermiation failure, disorganization of the spermatogenic cycle and abnormal head morphology in elongating spermatids. This results in the inappropriate placement and juxtaposition of germ cell types within the epithelium. Sperm that did enter the epididymis displayed irregular shaped sperm heads, and retained cytoplasmic components. These sperm also stained positively for acidic aniline, indicating improper removal of histones and lack of proper chromatin condensation. Electron microscopy showed that spermatids in the seminiferous tubules of Chd5 KO mice have extensive nuclear deformation, with irregular shaped heads of elongated spermatids, and lack the progression of chromatin condensation in an anterior-to-posterior direction. However, the mRNA expression levels of other important genes controlling spermatogenesis were not affected. Chd5 KO mice also showed decreased H4 hyperacetylation beginning at stage IX, step 9, which is vital for the histone-transition protein replacement in spermiogenesis. Our data indicate that CHD5 is required for normal spermiogenesis, especially for spermatid chromatin condensation.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2010

Regulated gene expression in cultured type II cells of adult human lung

Philip L. Ballard; Jae W. Lee; Xiaohui Fang; Cheryl J. Chapin; Lennell Allen; Mark R. Segal; Horst Fischer; Beate Illek; Linda W. Gonzales; Venkatadri Kolla; Michael A. Matthay

Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at approximately 95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days on collagen-coated dishes with or without DCI for the final 3 days. In freshly isolated cells, highly expressed genes included SFTPA/B/C, SCGB1A, IL8, CXCL2, and SFN in addition to ubiquitously expressed genes. Transcript abundance was correlated between fetal and adult cells (r = 0.88), with a subset of 187 genes primarily related to inflammation and immunity that were expressed >10-fold higher in adult cells. During control culture, expression increased for 8.1% of expressed genes and decreased for approximately 4% including 118 immune response and 10 surfactant-related genes. DCI treatment promoted lamellar body production and increased expression of approximately 3% of probed genes by > or =1.5-fold; 40% of these were also induced in fetal cells. Highly induced genes (> or =10-fold) included PGC, ZBTB16, DUOX1, PLUNC, CIT, and CRTAC1. Twenty-five induced genes, including six genes related to surfactant (SFTPA/B/C, PGC, CEBPD, and ADFP), also had decreased expression during control culture and thus are candidates for hormonal regulation in vivo. Our results further define the adult human type II cell molecular phenotype and demonstrate that a subset of genes remains hormone responsive in cultured adult cells.


Cancer Research | 2014

Role of CHD5 in Human Cancers: 10 Years Later

Venkatadri Kolla; Tiangang Zhuang; Mayumi Higashi; Koumudi Naraparaju; Garrett M. Brodeur

CHD5 was first identified because of its location on 1p36 in a region of frequent deletion in neuroblastomas. CHD5 (chromodomain-helicase-DNA-binding-5) is the fifth member of a family of chromatin remodeling proteins, and it probably functions by forming a nucleosome remodeling and deacetylation (NuRD) complex that regulates transcription of particular genes. CHD5 is preferentially expressed in the nervous system and testis. On the basis of its position, pattern of expression, and function in neuroblastoma cells and xenografts, CHD5 was identified as a tumor suppressor gene (TSG). Evidence soon emerged that CHD5 also functioned as a TSG in gliomas and a variety of other tumor types, including breast, colon, lung, ovary, and prostate cancers. Although one copy of CHD5 is deleted frequently, inactivating mutations of the remaining allele are rare. However, DNA methylation of the CHD5 promoter is found frequently, and this epigenetic mechanism leads to biallelic inactivation. Furthermore, low CHD5 expression is strongly associated with unfavorable clinical and biologic features as well as outcome in neuroblastomas and many other tumor types. Thus, based on its likely involvement as a TSG in neuroblastomas, gliomas, and many common adult tumors, CHD5 may play an important developmental role in many other tissues besides the nervous system and testis.


Pediatric Blood & Cancer | 2012

Clinical Significance of NTRK Family Gene Expression in Neuroblastomas

Jennifer E. Light; Hiroshi Koyama; Jane E. Minturn; Ruth Ho; Anisha M. Simpson; Radhika Iyer; Jennifer L. Mangino; Venkatadri Kolla; Wendy B. London; Garrett M. Brodeur

Neuroblastomas (NBs) are characterized by clinical heterogeneity, from spontaneous regression to relentless progression. The pattern of NTRK family gene expression contributes to these disparate behaviors. TrkA/NTRK1 is expressed in favorable NBs that regress or differentiate, whereas TrkB/NTRK2 and its ligand brain‐derived neurotrophic factor (BDNF) are co‐expressed in unfavorable NBs, representing an autocrine survival pathway. We determined the significance of NTRK family gene expression in a large, representative set of primary NBs.


Cancer Letters | 2016

Entrectinib is a potent inhibitor of Trk-driven neuroblastomas in a xenograft mouse model

Radhika Iyer; Lea Wehrmann; Rebecca L. Golden; Koumudi Naraparaju; Jamie L. Croucher; Suzanne P. MacFarland; Peng Guan; Venkatadri Kolla; Ge Wei; Nicholas Cam; Gang Li; Zachary Hornby; Garrett M. Brodeur

Neuroblastoma (NB) is one of the most common and deadly childhood solid tumors. These tumors are characterized by clinical heterogeneity, from spontaneous regression to relentless progression, and the Trk family of neurotrophin receptors plays an important role in this heterogeneous behavior. We wanted to determine if entrectinib (RXDX-101, Ignyta, Inc.), an oral Pan-Trk, Alk and Ros1 inhibitor, was effective in our NB model. In vitro effects of entrectinib, either as a single agent or in combination with the chemotherapeutic agents Irinotecan (Irino) and Temozolomide (TMZ), were studied on an SH-SY5Y cell line stably transfected with TrkB. In vivo growth inhibition activity was studied in NB xenografts, again as a single agent or in combination with Irino-TMZ. Entrectinib significantly inhibited the growth of TrkB-expressing NB cells in vitro, and it significantly enhanced the growth inhibition of Irino-TMZ when used in combination. Single agent therapy resulted in significant tumor growth inhibition in animals treated with entrectinib compared to control animals [p < 0.0001 for event-free survival (EFS)]. Addition of entrectinib to Irino-TMZ also significantly improved the EFS of animals compared to vehicle or Irino-TMZ treated animals [p < 0.0001 for combination vs. control, p = 0.0012 for combination vs. Irino-TMZ]. We show that entrectinib inhibits growth of TrkB expressing NB cells in vitro and in vivo, and that it enhances the efficacy of conventional chemotherapy in in vivo models. Our data suggest that entrectinib is a potent Trk inhibitor and should be tested in clinical trials for NBs and other Trk-expressing tumors.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Carcinoembryonic cell adhesion molecule 6 in human lung: regulated expression of a multifunctional type II cell protein

Venkatadri Kolla; Linda W. Gonzales; Nicole A. Bailey; Ping Wang; Sreedevi Angampalli; Marye H. Godinez; Muniswamy Madesh; Philip L. Ballard

Carcinoembryonic cell adhesion molecule 6 (CEACAM6) is a glycosylated, glycosylphosphatidylinositol (GPI)-anchored protein expressed in epithelial cells of various human tissues. It binds gram-negative bacteria and is overexpressed in cancers, where it is antiapoptotic and promotes metastases. To characterize CEACAM6 expression in developing lung, we cultured human fetal lung epithelial cells and examined responses to differentiation-promoting hormones, adenovirus expressing thyroid transcription factor-1 (TTF-1), and silencing of TTF-1 with small inhibitory RNA. Glucocorticoid and cAMP had additive stimulatory effects on CEACAM6 content, and combined treatment maximally increased transcription rate, mRNA, and protein approximately 10-fold. Knockdown of TTF-1 reduced hormone induction of CEACAM6 by 80%, and expression of recombinant TTF-1 increased CEACAM6 in a dose-dependent fashion. CEACAM6 content of lung tissue increased during the third trimester and postnatally. By immunostaining, CEACAM6 was present in fetal type II cells, but not mesenchymal cells, and localized to both the plasma membrane and within surfactant-containing lamellar bodies. CEACAM6 was secreted from cultured type II cells and was present in both surfactant and supernatant fractions of infant tracheal aspirates. In functional studies, CEACAM6 reduced inhibition of surfactant surface properties by proteins in vitro and blocked apoptosis of electroporated cultured cells. We conclude that CEACAM6 in fetal lung epithelial cells is developmentally and hormonally regulated and a target protein for TTF-1. Because CEACAM6 acts as an antiapoptotic factor and stabilizes surfactant function, in addition to a putative role in innate defense against bacteria, we propose that it is a multifunctional alveolar protein.


Biomaterials | 2015

Nanoparticle-mediated delivery of a rapidly activatable prodrug of SN-38 for neuroblastoma therapy

Ivan S. Alferiev; Radhika Iyer; Jamie L. Croucher; Richard F. Adamo; Kehan Zhang; Jennifer L. Mangino; Venkatadri Kolla; Ilia Fishbein; Garrett M. Brodeur; Robert J. Levy; Michael Chorny

Nanomedicine-based strategies have the potential to improve therapeutic performance of a wide range of anticancer agents. However, the successful implementation of nanoparticulate delivery systems requires the development of adequately sized nanocarriers delivering their therapeutic cargo to the target in a protected, pharmacologically active form. The present studies focused on a novel nanocarrier-based formulation strategy for SN-38, a topoisomerase I inhibitor with proven anticancer potential, whose clinical application is compromised by toxicity, poor stability and incompatibility with conventional delivery vehicles. SN-38 encapsulated in biodegradable sub-100 nm sized nanoparticles (NP) in the form of its rapidly activatable prodrug derivative with tocopherol succinate potently inhibited the growth of neuroblastoma cells in a dose- and exposure time-dependent manner, exhibiting a delayed response pattern distinct from that of free SN-38. In a xenograft model of neuroblastoma, prodrug-loaded NP caused rapid regression of established large tumors, significantly delayed tumor regrowth after treatment cessation and markedly extended animal survival. The NP formulation strategy enabled by a reversible chemical modification of the drug molecule offers a viable means for SN-38 delivery achieving sustained intratumoral drug levels and contributing to the potency and extended duration of antitumor activity, both prerequisites for effective treatment of neuroblastoma and other cancers.

Collaboration


Dive into the Venkatadri Kolla's collaboration.

Top Co-Authors

Avatar

Garrett M. Brodeur

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mayumi Higashi

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Tiangang Zhuang

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Linda W. Gonzales

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Radhika Iyer

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Koumudi Naraparaju

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Ivan S. Alferiev

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Michael Chorny

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Jamie L. Croucher

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge