Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Venkataramana K. Sidhaye is active.

Publication


Featured researches published by Venkataramana K. Sidhaye.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Shear stress regulates aquaporin-5 and airway epithelial barrier function

Venkataramana K. Sidhaye; Kelly S. Schweitzer; Michael J. Caterina; Larissa A. Shimoda; Landon S. King

As the interface with the outside world, the airway epithelial barrier is critical to lung defense. Because of respiratory efforts, the airways are exposed to shear stress; however, little is known regarding the effects of shear on epithelial function. We report that low-level shear stress enhances epithelial barrier function, an effect that requires serial activation of the transient receptor potential vanilloid (TRPV) 4 and L-type voltage-gated calcium channel (VGCC) and an increase in intracellular calcium. These changes lead to a selective decrease in aquaporin-5 (AQP5) abundance because of protein internalization and degradation. To determine whether AQP5 plays a role in mediating the shear effects on paracellular permeability, we overexpressed hAQP5 in 16HBE cells, an airway epithelial cell line without endogenous AQP5. We found that AQP5 expression was needed for shear-induced barrier enhancement. These findings have direct relevance to the regulation of epithelial barrier function, membrane permeability, and water homeostasis in the respiratory epithelia.


American Journal of Respiratory Cell and Molecular Biology | 2013

Regulatory T Cells Reduce Acute Lung Injury Fibroproliferation by Decreasing Fibrocyte Recruitment

Brian T. Garibaldi; Franco R. D’Alessio; Jason R. Mock; D. Clark Files; Eric Chau; Yoshiki Eto; M. Bradley Drummond; Neil R. Aggarwal; Venkataramana K. Sidhaye; Landon S. King

Acute lung injury (ALI) causes significant morbidity and mortality. Fibroproliferation in ALI results in worse outcomes, but the mechanisms governing fibroproliferation remain poorly understood. Regulatory T cells (Tregs) are important in lung injury resolution. Their role in fibroproliferation is unknown. We sought to identify the role of Tregs in ALI fibroproliferation, using a murine model of lung injury. Wild-type (WT) and lymphocyte-deficient Rag-1(-/-) mice received intratracheal LPS. Fibroproliferation was characterized by histology and the measurement of lung collagen. Lung fibrocytes were measured by flow cytometry. To dissect the role of Tregs in fibroproliferation, Rag-1(-/-) mice received CD4(+)CD25(+) (Tregs) or CD4(+)CD25(-) Tcells (non-Tregs) at the time of LPS injury. To define the role of the chemokine (C-X-C motif) ligand 12 (CXCL12)-CXCR4 pathway in ALI fibroproliferation, Rag-1(-/-) mice were treated with the CXCR4 antagonist AMD3100 to block fibrocyte recruitment. WT and Rag-1(-/-) mice demonstrated significant collagen deposition on Day 3 after LPS. WT mice exhibited the clearance of collagen, but Rag-1(-/-) mice developed persistent fibrosis. This fibrosis was mediated by the sustained epithelial expression of CXCL12 (or stromal cell-derived factor 1 [SDF-1]) that led to increased fibrocyte recruitment. The adoptive transfer of Tregs resolved fibroproliferation by decreasing CXCL12 expression and subsequent fibrocyte recruitment. Blockade of the CXCL12-CXCR4 axis with AMD3100 also decreased lung fibrocytes and fibroproliferation. These results indicate a central role for Tregs in the resolution of ALI fibroproliferation by reducing fibrocyte recruitment along the CXCL12-CXCR4 axis. A dissection of the role of Tregs in ALI fibroproliferation may inform the design of new therapeutic tools for patients with ALI.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2015

Pulmonary epithelial barrier function- some new players and mechanisms

Kieran Brune; James A. Frank; Andreas Schwingshackl; James H. Finigan; Venkataramana K. Sidhaye

The pulmonary epithelium serves as a barrier to prevent access of the inspired luminal contents to the subepithelium. In addition, the epithelium dictates the initial responses of the lung to both infectious and noninfectious stimuli. One mechanism by which the epithelium does this is by coordinating transport of diffusible molecules across the epithelial barrier, both through the cell and between cells. In this review, we will discuss a few emerging paradigms of permeability changes through altered ion transport and paracellular regulation by which the epithelium gates its response to potentially detrimental luminal stimuli. This review is a summary of talks presented during a symposium in Experimental Biology geared toward novel and less recognized methods of epithelial barrier regulation. First, we will discuss mechanisms of dynamic regulation of cell-cell contacts in the context of repetitive exposure to inhaled infectious and noninfectious insults. In the second section, we will briefly discuss mechanisms of transcellular ion homeostasis specifically focused on the role of claudins and paracellular ion-channel regulation in chronic barrier dysfunction. In the next section, we will address transcellular ion transport and highlight the role of Trek-1 in epithelial responses to lung injury. In the final section, we will outline the role of epithelial growth receptor in barrier regulation in baseline, acute lung injury, and airway disease. We will then end with a summary of mechanisms of epithelial control as well as discuss emerging paradigms of the epithelium role in shifting between a structural element that maintains tight cell-cell adhesion to a cell that initiates and participates in immune responses.


Journal of Immunology | 2012

Resolution of Experimental Lung Injury by Monocyte-Derived Inducible Nitric Oxide Synthase

Franco R. D'Alessio; Kenji Tsushima; Neil R. Aggarwal; Jason R. Mock; Yoshiki Eto; Brian T. Garibaldi; Daniel C. Files; Claudia R. Avalos; Jackie V. Rodriguez; Adam T. Waickman; Sekhar P. Reddy; David B. Pearse; Venkataramana K. Sidhaye; Paul M. Hassoun; Michael T. Crow; Landon S. King

Although early events in the pathogenesis of acute lung injury (ALI) have been defined, little is known about the mechanisms mediating resolution. To search for determinants of resolution, we exposed wild type (WT) mice to intratracheal LPS and assessed the response at intervals to day 10, when injury had resolved. Inducible NO synthase (iNOS) was significantly upregulated in the lung at day 4 after LPS. When iNOS−/− mice were exposed to intratracheal LPS, early lung injury was attenuated; however, recovery was markedly impaired compared with WT mice. iNOS−/− mice had increased mortality and sustained increases in markers of lung injury. Adoptive transfer of WT (iNOS+/+) bone marrow-derived monocytes or direct adenoviral gene delivery of iNOS into injured iNOS−/− mice restored resolution of ALI. Irradiated bone marrow chimeras confirmed the protective effects of myeloid-derived iNOS but not of epithelial iNOS. Alveolar macrophages exhibited sustained expression of cosignaling molecule CD86 in iNOS−/− mice compared with WT mice. Ab-mediated blockade of CD86 in iNOS−/− mice improved survival and enhanced resolution of lung inflammation. Our findings show that monocyte-derived iNOS plays a pivotal role in mediating resolution of ALI by modulating lung immune responses, thus facilitating clearance of alveolar inflammation and promoting lung repair.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2010

Moderate oxygen augments lipopolysaccharide-induced lung injury in mice

Neil R. Aggarwal; Franco R. D'Alessio; Kenji Tsushima; D. Clark Files; Mahendra Damarla; Venkataramana K. Sidhaye; Mostafa Fraig; Vsevolod Y. Polotsky; Landon S. King

Despite the associated morbidity and mortality, underlying mechanisms leading to the development of acute lung injury (ALI) remain incompletely understood. Frequently, ALI develops in the hospital, coinciding with institution of various therapies, including the use of supplemental oxygen. Although pathological evidence of hyperoxia-induced ALI in humans has yet to be proven, animal studies involving high oxygen concentration reproducibly induce ALI. The potentially injurious role of lower and presumably safer oxygen concentrations has not been well characterized in any species. We hypothesized that in the setting of a preexisting insult to the lung, the addition of moderate-range oxygen can augment lung injury. Our model of low-dose intratracheal LPS (IT LPS) followed by 60% oxygen caused a significant increase in ALI compared with LPS or oxygen alone with increased alveolar neutrophils, histological injury, and epithelial barrier permeability. In the LPS plus oxygen group, regulatory T cell number was reduced, and macrophage activation markers were increased, compared with LPS alone. Antibody-mediated depletion of neutrophils significantly abrogated the observed lung injury for all measured factors. The enhanced presence of alveolar neutrophils in the setting of LPS and oxygen is due, at least in part, to elevated chemokine gradients signaling neutrophils to the alveolar space. We believe these results strongly support an effect of lower concentrations of oxygen to augment the severity of a mild preexisting lung injury and warrants further investigation in both animals and humans.


American Journal of Respiratory Cell and Molecular Biology | 2011

Septin-2 Mediates Airway Epithelial Barrier Function in Physiologic and Pathologic Conditions

Venkataramana K. Sidhaye; Eric Chau; Patrick N. Breysse; Landon S. King

Epithelial cells have the ability to regulate paracellular permeability dynamically in response to extracellular stimuli. With every respiratory effort, airway epithelial cells are exposed to both physiologic as well as pathologic stimuli, and regulation of the epithelial barrier in response to these stimuli is crucial to respiratory function. We report that increased membrane septin-2 localization mediates decreases in paracellular permeability by altering cortical actin arrangement in human airway epithelial cells. This phenomenon occurs in response to both physiologic levels of shear stress and a pathologic stimulus, particular matter exposure. The resulting changes in barrier function in response to septin-2 redistribution have a significant impact on the ability of the apical ligand, epidermal growth factor, to interact with its receptor, epidermal growth factor receptor, which is segregated to the basolateral side in airway epithelial cells. This suggests that the dynamic regulation of the epithelial barrier function is essential in regulating signaling responses to extracellular stimuli. These findings indicate that septin-2 plays a fundamental role in regulating barrier function by altering cortical actin expression.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2012

Hypoxia-induced migration in pulmonary arterial smooth muscle cells requires calcium-dependent upregulation of aquaporin 1

Kyle Leggett; Julie Maylor; Clark Undem; Ning Lai; Wenju Lu; Kelly S. Schweitzer; Landon S. King; Allen C. Myers; J. T. Sylvester; Venkataramana K. Sidhaye; Larissa A. Shimoda

Pulmonary arterial smooth muscle cell (PASMC) migration is a key component of the vascular remodeling that occurs during the development of hypoxic pulmonary hypertension, although the mechanisms governing this phenomenon remain poorly understood. Aquaporin-1 (AQP1), an integral membrane water channel protein, has recently been shown to aid in migration of endothelial cells. Since AQP1 is expressed in certain types of vascular smooth muscle, we hypothesized that AQP1 would be expressed in PASMCs and would be required for migration in response to hypoxia. Using PCR and immunoblot techniques, we determined the expression of AQPs in pulmonary vascular smooth muscle and the effect of hypoxia on AQP levels, and we examined the role of AQP1 in hypoxia-induced migration in rat PASMCs using Transwell filter assays. Moreover, since the cytoplasmic tail of AQP1 contains a putative calcium binding site and an increase in intracellular calcium concentration ([Ca(2+)](i)) is a hallmark of hypoxic exposure in PASMCs, we also determined whether the responses were Ca(2+) dependent. Results were compared with those obtained in aortic smooth muscle cells (AoSMCs). We found that although AQP1 was abundant in both PASMCs and AoSMCs, hypoxia selectively increased AQP1 protein levels, [Ca(2+)](i), and migration in PASMCs. Blockade of Ca(2+) entry through voltage-dependent Ca(2+) or nonselective cation channels prevented the hypoxia-induced increase in PASMC [Ca(2+)](i), AQP1 levels, and migration. Silencing AQP1 via siRNA also prevented hypoxia-induced migration of PASMCs. Our results suggest that hypoxia induces a PASMC-specific increase in [Ca(2+)](i) that results in increased AQP1 protein levels and cell migration.


Mucosal Immunology | 2014

Foxp3 + regulatory T cells promote lung epithelial proliferation

Jason R. Mock; Brian T. Garibaldi; Neil R. Aggarwal; J. Jenkins; Nathachit Limjunyawong; Benjamin D. Singer; Eric Chau; R. Rabold; Daniel Clark Files; Venkataramana K. Sidhaye; Wayne Mitzner; E. M. Wagner; Landon S. King; Franco R. D'Alessio

Acute respiratory distress syndrome (ARDS) causes significant morbidity and mortality each year. There is a paucity of information regarding the mechanisms necessary for ARDS resolution. Foxp3+ regulatory T cells (Foxp3+ Treg cells) have been shown to be an important determinant of resolution in an experimental model of lung injury. We demonstrate that intratracheal delivery of endotoxin (lipopolysaccharide) elicits alveolar epithelial damage from which the epithelium undergoes proliferation and repair. Epithelial proliferation coincided with an increase in Foxp3+ Treg cells in the lung during the course of resolution. To dissect the role that Foxp3+ Treg cells exert on epithelial proliferation, we depleted Foxp3+ Treg cells, which led to decreased alveolar epithelial proliferation and delayed lung injury recovery. Furthermore, antibody-mediated blockade of CD103, an integrin, which binds to epithelial expressed E-cadherin decreased Foxp3+ Treg numbers and decreased rates of epithelial proliferation after injury. In a non-inflammatory model of regenerative alveologenesis, left lung pneumonectomy, we found that Foxp3+ Treg cells enhanced epithelial proliferation. Moreover, Foxp3+ Treg cells co-cultured with primary type II alveolar cells (AT2) directly increased AT2 cell proliferation in a CD103-dependent manner. These studies provide evidence of a new and integral role for Foxp3+ Treg cells in repair of the lung epithelium.


PLOS ONE | 2012

A Novel Role for Aquaporin-5 in Enhancing Microtubule Organization and Stability

Venkataramana K. Sidhaye; Eric Chau; Vasudha Srivastava; Srinivas Sirimalle; Chinmayee Balabhadrapatruni; Neil R. Aggarwal; Franco R. D'Alessio; Douglas N. Robinson; Landon S. King

Aquaporin-5 (AQP5) is a water-specific channel located on the apical surface of airway epithelial cells. In addition to regulating transcellular water permeability, AQP5 can regulate paracellular permeability, though the mechanisms by which this occurs have not been determined. Microtubules also regulate paracellular permeability. Here, we report that AQP5 promotes microtubule assembly and helps maintain the assembled microtubule steady state levels with slower turnover dynamics in cells. Specifically, reduced levels of AQP5 correlated with lower levels of assembled microtubules and decreased paracellular permeability. In contrast, overexpression of AQP5 increased assembly of microtubules, with evidence of increased MT stability, and promoted the formation of long straight microtubules in the apical domain of the epithelial cells. These findings indicate that AQP5-mediated regulation of microtubule dynamics modulates airway epithelial barrier properties and epithelial function.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2016

Enhanced resolution of experimental ARDS through IL-4-mediated lung macrophage reprogramming.

Franco R. D'Alessio; John M. Craig; Benjamin D. Singer; Daniel Clark Files; Jason R. Mock; Brian T. Garibaldi; Jonathan Fallica; Asutosh Tripathi; Pooja Mandke; Jonathan H. Gans; Nathachit Limjunyawong; Venkataramana K. Sidhaye; Nicola M. Heller; Wayne Mitzner; Landon S. King; Neil R. Aggarwal

Despite intense investigation, acute respiratory distress syndrome (ARDS) remains an enormous clinical problem for which no specific therapies currently exist. In this study, we used intratracheal lipopolysaccharide or Pseudomonas bacteria administration to model experimental acute lung injury (ALI) and to further understand mediators of the resolution phase of ARDS. Recent work demonstrates macrophages transition from a predominant proinflammatory M1 phenotype during acute inflammation to an anti-inflammatory M2 phenotype with ALI resolution. We tested the hypothesis that IL-4, a potent inducer of M2-specific protein expression, would accelerate ALI resolution and lung repair through reprogramming of endogenous inflammatory macrophages. In fact, IL-4 treatment was found to offer dramatic benefits following delayed administration to mice subjected to experimental ALI, including increased survival, accelerated resolution of lung injury, and improved lung function. Expression of the M2 proteins Arg1, FIZZ1, and Ym1 was increased in lung tissues following IL-4 treatment, and among macrophages, FIZZ1 was most prominently upregulated in the interstitial subpopulation. A similar trend was observed for the expression of macrophage mannose receptor (MMR) and Dectin-1 on the surface of alveolar macrophages following IL-4 administration. Macrophage depletion or STAT6 deficiency abrogated the therapeutic effect of IL-4. Collectively, these data demonstrate that IL-4-mediated therapeutic macrophage reprogramming can accelerate resolution and lung repair despite delayed use following experimental ALI. IL-4 or other therapies that target late-phase, proresolution pathways may hold promise for the treatment of human ARDS.

Collaboration


Dive into the Venkataramana K. Sidhaye's collaboration.

Top Co-Authors

Avatar

Landon S. King

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Chau

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Brian T. Garibaldi

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jason R. Mock

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Landon S. King

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pooja Mandke

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge