Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Venkatesh N. Murthy is active.

Publication


Featured researches published by Venkatesh N. Murthy.


Neuron | 1997

Heterogeneous Release Properties of Visualized Individual Hippocampal Synapses

Venkatesh N. Murthy; Terrence J. Sejnowski; Charles F. Stevens

We have used endocytotic uptake of the styryl dye FM1-43 at synaptic terminals (Betz and Bewick, 1992) to study properties of individual synapses formed by axons of single hippocampal neurons in tissue culture. The distribution of values for probability of evoked transmitter release p estimated by dye uptake is continuous, with a preponderance of low p synapses and a broad spread of probabilities. We have validated this method by demonstrating that the optically estimated distribution of p at autapses in single-neuron microislands predicts, with no free parameters, the rate of blocking of NMDA responses by the noncompetitive antagonist MK-801 at the same synapses. Different synapses made by a single axon exhibited varying amounts of paired-pulse modulation; synapses with low p tended to be facilitated more than those with high p. The increment in release probability produced by increasing external calcium ion concentration also depended on a synapses initial p value. The size of the recycling pool of vesicles was strongly correlated with p as well, suggesting that synapses with higher release probabilities had more vesicles. Finally, p values of neighboring synapses were correlated, indicating local interactions in the dendrite or axon, or both.


Neuron | 2001

Inactivity Produces Increases in Neurotransmitter Release and Synapse Size

Venkatesh N. Murthy; Thomas Schikorski; Charles F. Stevens; Yongling Zhu

When hippocampal synapses in culture are pharmacologically silenced for several days, synaptic strength increases. The structural correlate of this change in strength is an increase in the size of the synapses, with all synaptic components--active zone, postsynaptic density, and bouton--becoming larger. Further, the number of docked vesicles and the total number of vesicles per synapse increases, although the number of docked vesicles per area of active zone is unchanged. In parallel with these anatomical changes, the physiologically measured size of the readily releasable pool (RRP) and the release probability are increased. Ultrastructural analysis of individual synapses in which the RRP was previously measured reveals that, within measurement error, the same number of vesicles are docked as are estimated to be in the RRP.


Nature Neuroscience | 2002

Rapid turnover of actin in dendritic spines and its regulation by activity.

Erin N. Star; David J. Kwiatkowski; Venkatesh N. Murthy

Dendritic spines are motile structures that contain high concentrations of filamentous actin. Using hippocampal neurons expressing fluorescent actin and the method of fluorescence recovery after photobleaching, we found that 85 ± 2% of actin in the spine was dynamic, with a turnover time of 44.2 ± 4.0 s. The rapid turnover is not compatible with current models invoking a large population of stable filaments and static coupling of filaments to postsynaptic components. Low-frequency stimulation known to induce long-term depression in these neurons stabilized nearly half the dynamic actin in the spine. This effect depended on the activation of N-methyl-d-aspartate (NMDA) receptors and the influx of calcium. In neurons from mice lacking gelsolin, a calcium-dependent actin-binding protein, activity-dependent stabilization of actin was impaired. Our studies provide new information on the kinetics of actin turnover in spines, its regulation by neural activity and the mechanisms involved in this regulation.


Nature | 2002

Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons

Juan Burrone; Michael O'Byrne; Venkatesh N. Murthy

The rules by which neuronal activity causes long-term modification of synapses in the central nervous system are not fully understood. Whereas competitive or correlation-based rules result in local modification of synapses, homeostatic modifications allow neuron-wide changes in synaptic strength, promoting stability. Experimental investigations of these rules at central nervous system synapses have relied generally on manipulating activity in populations of neurons. Here, we investigated the effect of suppressing excitability in single neurons within a network of active hippocampal neurons by overexpressing an inward-rectifier potassium channel. Reducing activity in a neuron before synapse formation leads to a reduction in functional synaptic inputs to that neuron; no such reduction was observed when activity of all neurons was uniformly suppressed. In contrast, suppressing activity in a single neuron after synapses are established results in a homeostatic increase in synaptic input, which restores the activity of the neuron to control levels. Our results highlight the differences between global and selective suppression of activity, as well as those between early and late manipulation of activity.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Gradients of substrate-bound laminin orient axonal specification of neurons

Stephan K. W. Dertinger; Xingyu Jiang; Zhiying Li; Venkatesh N. Murthy; George M. Whitesides

Little is known about the influence of substrate-bound gradients on neuronal development, since it has been difficult to fabricate gradients over the distances typically required for biological studies (a few hundred micrometers). This article demonstrates a generally applicable technique for the fabrication of substrate-bound gradients of proteins with complex shapes, using laminar flows in microchannels. Gradients that range from pure laminin to pure BSA were formed in solution by using a network of microchannels, and these proteins were allowed to adsorb onto a homogeneous layer of poly-l-lysine. Rat hippocampal neurons were cultivated on these substrate-bound gradients. Analysis of optical images of these neurons showed that axon specification is oriented in the direction of increasing surface density of laminin. Linear gradients in laminin adsorbed from a gradient in solution having a slope of ∇[laminin] > about 0.06 μg (ml⋅μm)−1 (defined by dividing the change of concentration of laminin in solution over the distance of the gradient) orient axon specification, whereas those with ∇[laminin] < about 0.06 μg (ml⋅μm)−1 have no effect.


Nature Methods | 2014

All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins

Daniel Hochbaum; Yongxin Zhao; Samouil L Farhi; Nathan Cao Klapoetke; Christopher A. Werley; Vikrant Kapoor; Peng Zou; Joel M. Kralj; Dougal Maclaurin; Niklas Smedemark-Margulies; Jessica L. Saulnier; Gabriella L. Boulting; Christoph Straub; Yong Ku Cho; Michael Melkonian; Gane Ka-Shu Wong; Venkatesh N. Murthy; Bernardo L. Sabatini; Edward S. Boyden; Robert E. Campbell; Adam E. Cohen

All-optical electrophysiology—spatially resolved simultaneous optical perturbation and measurement of membrane voltage—would open new vistas in neuroscience research. We evolved two archaerhodopsin-based voltage indicators, QuasAr1 and QuasAr2, which show improved brightness and voltage sensitivity, have microsecond response times and produce no photocurrent. We engineered a channelrhodopsin actuator, CheRiff, which shows high light sensitivity and rapid kinetics and is spectrally orthogonal to the QuasArs. A coexpression vector, Optopatch, enabled cross-talk–free genetically targeted all-optical electrophysiology. In cultured rat neurons, we combined Optopatch with patterned optical excitation to probe back-propagating action potentials (APs) in dendritic spines, synaptic transmission, subcellular microsecond-timescale details of AP propagation, and simultaneous firing of many neurons in a network. Optopatch measurements revealed homeostatic tuning of intrinsic excitability in human stem cell–derived neurons. In rat brain slices, Optopatch induced and reported APs and subthreshold events with high signal-to-noise ratios. The Optopatch platform enables high-throughput, spatially resolved electrophysiology without the use of conventional electrodes.


Nature | 1998

Synaptic vesicles retain their identity through the endocytic cycle

Venkatesh N. Murthy; Charles F. Stevens

After fusion of synaptic vesicles with presynaptic membrane and secretion of the contents of the vesicles into the synaptic cleft (a process known as exocytosis), the vesicular membrane is retrieved by endocytosis (internalization) for re-use,. Several issues regarding endocytosis at central synapses are unresolved, including the location of membrane retrieval (relative to the active zone, where exocytosis occurs), the time course of various endocytic steps, and the recycling path taken by newly endocytosed membranes. The classical model of synaptic-vesicle recycling, proposed by analogy to other cellular endocytic pathways, involves retrieval of the membrane, fusion of the membrane with endosome-like compartments and, finally, budding of new synaptic vesicles from endosomes, although the endosomal station may not be obligatory. Here we test the classical model by using the fluorescent membrane dye FM1-43 (refs 4–6) with quantitative fluorescence microscopy. We find that the amount of dye per vesicle taken up by endocytosis equals the amount of dye a vesicle releases on exocytosis; therefore, we conclude that the internalized vesicles do not, as the classical picture suggests, communicate with intermediate endosome-like compartments during the recycling process.


Current Opinion in Neurobiology | 2003

Synaptic gain control and homeostasis.

Juan Burrone; Venkatesh N. Murthy

Chronic changes in activity can induce neurons to alter the strength of all their synapses in unison. Although the specific changes that occur appear to vary depending on the experimental preparation, their net effect is to counter the experimentally induced modification of activity. Such adaptive, cell-wide changes in synaptic strength serve to stabilize neuronal activity and are collectively referred to as homeostatic synaptic plasticity. Recent studies have shed light on what triggers homeostatic synaptic plasticity, whether or not it is distinct from other forms of synaptic plasticity and whether or not it occurs in the intact brain.


Nature Neuroscience | 1999

Reversal of synaptic vesicle docking at central synapses

Venkatesh N. Murthy; Charles F. Stevens

We used quantitative fluorescence imaging of vesicles labeled with membrane-soluble dyes to determine rates of undocking and spontaneous exocytosis of vesicles docked to the active zone of hippocampal synapses in culture. Individual vesicles undock about once per two minutes and spontaneously exocytose about once per eight minutes. Thus, not only does undocking occur, but it is over threefold faster than spontaneous fusion.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis

A. Jamila Newton; Tom Kirchhausen; Venkatesh N. Murthy

The ability of synapses to sustain signal propagation relies on rapid recycling of transmitter-containing presynaptic vesicles. Clathrin- and dynamin-mediated retrieval of vesicular membrane has an undisputed role in synaptic vesicle recycling. There is also evidence for other modes of vesicle retrieval, including bulk retrieval and the so-called kiss-and-run recycling. Whether dynamin in required for these other modes of synaptic vesicle endocytosis remains unclear. Here, we have tested the role of dynamin in synaptic vesicle endocytosis by using a small molecule called dynasore, which rapidly inhibits the GTPase activity of dynamin with high specificity. Endocytosis after sustained or brief stimuli was completely and reversibly blocked by dynasore in cultured hippocampal neurons expressing the fluorescent tracer synaptopHluorin. By contrast, dynasore had no effect on exocytosis. In the presence of dynasore, low-frequency stimulation led to sustained accumulation of synaptopHluorin and other vesicular proteins on the surface membrane at a rate predicted from net exocytosis. These vesicular components remained on surface membranes even after the stimulus was terminated, suggesting that all endocytic events rely on dynamin during low-frequency activity as well as in the period after it. Ultrastructural analysis revealed a reduction in the density of synaptic vesicles and the presence of endocytic structures only at synapses that were stimulated in the presence of dynasore. In sum, our data indicate that dynamin is essential for all forms of compensatory synaptic vesicle endocytosis including any kiss-and-run events.

Collaboration


Dive into the Venkatesh N. Murthy's collaboration.

Top Co-Authors

Avatar

Dinu F. Albeanu

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles F. Stevens

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge