Venkateshwar A. Reddy
Genomics Institute of the Novartis Research Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Venkateshwar A. Reddy.
PLOS ONE | 2008
Wei Li; Mario H. Bengtson; Axel Ulbrich; Akio Matsuda; Venkateshwar A. Reddy; Anthony P. Orth; Sumit K. Chanda; Serge Batalov; Claudio A. P. Joazeiro
Specificity of protein ubiquitylation is conferred by E3 ubiquitin (Ub) ligases. We have annotated ∼617 putative E3s and substrate-recognition subunits of E3 complexes encoded in the human genome. The limited knowledge of the function of members of the large E3 superfamily prompted us to generate genome-wide E3 cDNA and RNAi expression libraries designed for functional screening. An imaging-based screen using these libraries to identify E3s that regulate mitochondrial dynamics uncovered MULAN/FLJ12875, a RING finger protein whose ectopic expression and knockdown both interfered with mitochondrial trafficking and morphology. We found that MULAN is a mitochondrial protein – two transmembrane domains mediate its localization to the organelles outer membrane. MULAN is oriented such that its E3-active, C-terminal RING finger is exposed to the cytosol, where it has access to other components of the Ub system. Both an intact RING finger and the correct subcellular localization were required for regulation of mitochondrial dynamics, suggesting that MULANs downstream effectors are proteins that are either integral to, or associated with, mitochondria and that become modified with Ub. Interestingly, MULAN had previously been identified as an activator of NF-κB, thus providing a link between mitochondrial dynamics and mitochondria-to-nucleus signaling. These findings suggest the existence of a new, Ub-mediated mechanism responsible for integration of mitochondria into the cellular environment.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Anna Dubrovska; Sungeun Kim; Richard J. Salamone; John R. Walker; Sauveur-Michel Maira; Carlos Garcia-Echeverria; Peter G. Schultz; Venkateshwar A. Reddy
Characterization of the molecular pathways that are required for the viability and maintenance of self-renewing tumor-initiating cells may ultimately lead to improved therapies for cancer. In this study, we show that a CD133+/CD44+ population of cells enriched in prostate cancer progenitors (PCaPs) has tumor-initiating potential and that these progenitors can be expanded under nonadherent, serum-free, sphere-forming conditions. Cells grown under these conditions have increased in vitro clonogenic and in vivo tumorigenic potential. mRNA expression analysis of cells grown under sphere-forming conditions, compared with long-term monolayer cultures, revealed preferential activation of the PI3K/AKT signaling pathway. PI3K p110α and β-protein levels were higher in cells grown under sphere-forming conditions, and phosphatase and tensin homolog (PTEN) knockdown by shRNA led to an increase in sphere formation as well as increased clonogenic and tumorigenic potential. Similarly, shRNA knockdown of FoxO3a led to an increase in tumorigenic potential. Consistent with these results, inhibition of PI3K activity by the dual PI3K/mTOR inhibitor NVP-BEZ235 led to growth inhibition of PCaPs. Taken together, our data strongly suggest that the PTEN/PI3K/Akt pathways are critical for prostate cancer stem-like cell maintenance and that targeting PI3K signaling may be beneficial in prostate cancer treatment by eliminating prostate cancer stem-like cells.
Clinical Cancer Research | 2010
Anna Dubrovska; Jimmy Elliott; Richard J. Salamone; Sungeun Kim; Lindsey Aimone; John R. Walker; James C. Watson; Maira Sauveur-Michel; Carlos Garcia-Echeverria; Charles Y. Cho; Venkateshwar A. Reddy; Peter G. Schultz
Purpose: The cancer stem cell hypothesis predicts that standard prostate cancer monotherapy eliminates bulk tumor cells but not a tumor-initiating cell population, eventually leading to relapse. Many studies have sought to determine the underlying differences between bulk tumor and cancer stem cells. Experimental Design: Our previous data suggest that the PTEN/PI3K/AKT pathway is critical for the in vitro maintenance of CD133+/CD44+ prostate cancer progenitors and, consequently, that targeting PI3K signaling may be beneficial in treatment of prostate cancer. Results: Here, we show that inhibition of PI3K activity by the dual PI3K/mTOR inhibitor NVP-BEZ235 leads to a decrease in the population of CD133+/CD44+ prostate cancer progenitor cells in vivo. Moreover, the combination of the PI3K/mTOR modulator NVP-BEZ235, which eliminates prostate cancer progenitor populations, and the chemotherapeutic drug Taxotere, which targets the bulk tumor, is significantly more effective in eradicating tumors in a prostate cancer xenograft model than monotherapy. Conclusion: This combination treatment ultimately leads to the expansion of cancer progenitors with a PTEN E91D mutation, suggesting that the analysis of PTEN mutations could predict therapeutic response to the dual therapy. Clin Cancer Res; 16(23); 5692–702. ©2010 AACR.
PLOS ONE | 2012
Anna Dubrovska; Jimmy Elliott; Richard J. Salamone; Gennady D. Telegeev; Alexander E. Stakhovsky; Ihor B. Schepotin; Feng Yan; Yan Wang; Laure C. Bouchez; Sumith A. Kularatne; James Watson; Christopher Trussell; Venkateshwar A. Reddy; Charles Y. Cho; Peter G. Schultz
Tumor progenitor cells represent a population of drug-resistant cells that can survive conventional chemotherapy and lead to tumor relapse. However, little is known of the role of tumor progenitors in prostate cancer metastasis. The studies reported herein show that the CXCR4/CXCL12 axis, a key regulator of tumor dissemination, plays a role in the maintenance of prostate cancer stem-like cells. The CXCL4/CXCR12 pathway is activated in the CD44+/CD133+ prostate progenitor population and affects differentiation potential, cell adhesion, clonal growth and tumorigenicity. Furthermore, prostate tumor xenograft studies in mice showed that a combination of the CXCR4 receptor antagonist AMD3100, which targets prostate cancer stem-like cells, and the conventional chemotherapeutic drug Taxotere, which targets the bulk tumor, is significantly more effective in eradicating tumors as compared to monotherapy.
British Journal of Cancer | 2012
Anna Dubrovska; A Hartung; Laure C. Bouchez; John R. Walker; Venkateshwar A. Reddy; Charles Y. Cho; Peter G. Schultz
Background:Tamoxifen is commonly used for breast cancer therapy. However, tamoxifen resistance is an important clinical problem. Continuous treatment with conventional therapy may contribute to cancer progression in recurring cancers through the accumulation of drug-resistant cancer progenitors.Methods:To investigate signalling mechanisms important for the maintenance and viability of drug-resistant cancer progenitors, we used microarray analysis, PCR array for genes involved in cancer drug resistance and metabolism, flow cytometry, soft agar colony formation assay, in vivo tumourigenicity assay and immunohistochemical analysis using tamoxifen-sensitive and tamoxifen-resistant breast cancer MCF7 cells.Results:Downregulation of CXCR4 signalling by small molecule antagonist AMD3100 specifically inhibits growth of progenitor cell population in MCF7(TAM-R) cells both in vitro and in vivo. Microarray analysis revealed aryl hydrocarbon receptor (AhR) signalling as one of the top networks that is differentially regulated in MCF7(TAM-R) and MCF7 xenograft tumours treated with AMD3100. Further, small molecule antagonists of AhR signalling specifically inhibit the progenitor population in MCF7(TAM-R) cells and growth of MCF7(TAM-R) xenografts in vivo.Conclusion:The chemokine receptor CXCR4 maintains a cancer progenitor population in tamoxifen-resistant MCF7 cells through AhR signalling and could be a putative target for the treatment of tamoxifen-resistant breast cancers.
Oncogene | 2006
Christian Britschgi; Mattia Rizzi; Tobias J. Grob; Mario P. Tschan; Barbara Hügli; Venkateshwar A. Reddy; Anne-Catherine Andres; Bruce E. Torbett; A Tobler; M F Fey
The tumor suppressor gene hypermethylated in cancer 1 (HIC1), located on human chromosome 17p13.3, is frequently silenced in cancer by epigenetic mechanisms. Hypermethylated in cancer 1 belongs to the bric à brac/poxviruses and zinc-finger family of transcription factors and acts by repressing target gene expression. It has been shown that enforced p53 expression leads to increased HIC1 mRNA, and recent data suggest that p53 and Hic1 cooperate in tumorigenesis. In order to elucidate the regulation of HIC1 expression, we have analysed the HIC1 promoter region for p53-dependent induction of gene expression. Using progressively truncated luciferase reporter gene constructs, we have identified a p53-responsive element (PRE) 500 bp upstream of the TATA-box containing promoter P0 of HIC1, which is sequence specifically bound by p53 in vitro as assessed by electrophoretic mobility shift assays. We demonstrate that this HIC1 p53-responsive element (HIC1.PRE) is necessary and sufficient to mediate induction of transcription by p53. This result is supported by the observation that abolishing endogenous wild-type p53 function prevents HIC1 mRNA induction in response to UV-induced DNA damage. Other members of the p53 family, notably TAp73β and ΔNp63α, can also act through this HIC1.PRE to induce transcription of HIC1, and finally, hypermethylation of the HIC1 promoter attenuates inducibility by p53.
PLOS ONE | 2013
Sungeun Kim; Anna Dubrovska; Richard J. Salamone; John R. Walker; Kathryn B. Grandinetti; Ghislain M. C. Bonamy; Anthony P. Orth; Jimmy Elliott; Diana Graus Porta; Carlos Garcia-Echeverria; Venkateshwar A. Reddy
Emerging evidence suggests that some cancers contain a population of stem-like TICs (tumor-initiating cells) and eliminating TICs may offer a new strategy to develop successful anti-cancer therapies. As molecular mechanisms underlying the maintenance of the TIC pool are poorly understood, the development of TIC-specific therapeutics remains a major challenge. We first identified and characterized TICs and non-TICs isolated from a mouse breast cancer model. TICs displayed increased tumorigenic potential, self-renewal, heterogeneous differentiation, and bipotency. Gene expression analysis and immunostaining of TICs and non-TICs revealed that FGFR2 was preferentially expressed in TICs. Loss of FGFR2 impaired self-renewal of TICs, thus resulting in marked decreases in the TIC population and tumorigenic potential. Restoration of FGFR2 rescued the defects in TIC pool maintenance, bipotency, and breast tumor growth driven by FGFR2 knockdown. In addition, pharmacological inhibition of FGFR2 kinase activity led to a decrease in the TIC population which resulted in suppression of breast tumor growth. Moreover, human breast TICs isolated from patient tumor samples were found enriched in a FGFR2+ population that was sufficient to initiate tumor growth. Our data suggest that FGFR2 is essential in sustaining the breast TIC pool through promotion of self-renewal and maintenance of bipotent TICs, and raise the possibility of FGFR2 inhibition as a strategy for anti-cancer therapy by eradicating breast TICs.
Molecular Immunology | 2011
Jasmin Batliner; Maria Michela Mancarelli; Mathias Jenal; Venkateshwar A. Reddy; Martin F. Fey; Bruce E. Torbett; Mario P. Tschan
C-type lectin domain family 5, member A (CLEC5A), also known as myeloid DNAX activation protein 12 (DAP12)-associating lectin-1 (MDL-1), is a cell surface receptor strongly associated with the activation and differentiation of myeloid cells. CLEC5A associates with its adaptor protein DAP12 to activate a signaling cascade resulting in activation of downstream kinases in inflammatory responses. Currently, little is known about the transcriptional regulation of CLEC5A. We identified CLEC5A as one of the most highly induced genes in a microarray gene profiling experiment of PU.1 restored myeloid PU.1-null cells. We further report that CLEC5A expression is significantly reduced in several myeloid differentiation models upon PU.1 inhibition during monocyte/macrophage or granulocyte differentiation. In addition, CLEC5A mRNA expression was significantly lower in primary acute myeloid leukemia (AML) patient samples than in macrophages and granulocytes from healthy donors. Moreover, we found activation of a CLEC5A promoter reporter by PU.1 as well as in vivo binding of PU.1 to the CLEC5A promoter. Our findings indicate that CLEC5A expression in monocyte/macrophage and granulocytes is regulated by PU.1.
Leukemia | 2010
Mathias Jenal; Jasmin Batliner; Venkateshwar A. Reddy; Torsten Haferlach; A Tobler; M F Fey; Bruce E. Torbett; Mario P. Tschan
Carillo for JAK2 exon 12 mutation analysis; to Dr Isabelle Corre for expert advice; and to Mrs Danielle Pineau for excellent technical help. The study was supported by grants from the Ligue Nationale contre le Cancer (Comité de Loire-Atlantique, Comité du Morbihan, Comité d’Ille-et-Vilaine) and from the Association pour la Recherche contre le Cancer (ARC). CC and MB benefited from scholarships from the French Ministry of Research.
Nature | 2017
Stephan Duss; Sungeun Kim; Joana Pinto Couto; Heike Brinkhaus; Shany Koren; Duvini De Silva; Kirsten D. Mertz; Daniela Kaup; Zsuzsanna Varga; Hans Voshol; Alexandra Vissieres; Cédric Leroy; Tim Roloff; Michael B. Stadler; Christina H. Scheel; Loren Miraglia; Anthony P. Orth; Ghislain M. C. Bonamy; Venkateshwar A. Reddy; Mohamed Bentires-Alj
Cell fate perturbations underlie many human diseases, including breast cancer. Unfortunately, the mechanisms by which breast cell fate are regulated are largely unknown. The mammary gland epithelium consists of differentiated luminal epithelial and basal myoepithelial cells, as well as undifferentiated stem cells and more restricted progenitors. Breast cancer originates from this epithelium, but the molecular mechanisms that underlie breast epithelial hierarchy remain ill-defined. Here, we use a high-content confocal image-based short hairpin RNA screen to identify tumour suppressors that regulate breast cell fate in primary human breast epithelial cells. We show that ablation of the large tumour suppressor kinases (LATS) 1 and 2 (refs 5, 6), which are part of the Hippo pathway, promotes the luminal phenotype and increases the number of bipotent and luminal progenitors, the proposed cells-of-origin of most human breast cancers. Mechanistically, we have identified a direct interaction between Hippo and oestrogen receptor-α (ERα) signalling. In the presence of LATS, ERα was targeted for ubiquitination and Ddb1–cullin4-associated-factor 1 (DCAF1)-dependent proteasomal degradation. Absence of LATS stabilized ERα and the Hippo effectors YAP and TAZ (hereafter YAP/TAZ), which together control breast cell fate through intrinsic and paracrine mechanisms. Our findings reveal a non-canonical (that is, YAP/TAZ-independent) effect of LATS in the regulation of human breast cell fate.