Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vera A. Khokhlova is active.

Publication


Featured researches published by Vera A. Khokhlova.


Acoustical Physics | 2003

Physical mechanisms of the therapeutic effect of ultrasound (a review)

Michael R. Bailey; Vera A. Khokhlova; Oleg A. Sapozhnikov; Steven G. Kargl; Lawrence A. Crum

Therapeutic ultrasound is an emerging field with many medical applications. High intensity focused ultrasound (HIFU) provides the ability to localize the deposition of acoustic energy within the body, which can cause tissue necrosis and hemostasis. Similarly, shock waves from a lithotripter penetrate the body to comminute kidney stones, and transcutaneous ultrasound enhances the transport of chemotherapy agents. New medical applications have required advances in transducer design and advances in numerical and experimental studies of the interaction of sound with biological tissues and fluids. The primary physical mechanism in HIFU is the conversion of acoustic energy into heat, which is often enhanced by nonlinear acoustic propagation and nonlinear scattering from bubbles. Other mechanical effects from ultrasound appear to stimulate an immune response, and bubble dynamics play an important role in lithotripsy and ultrasound-enhanced drug delivery. A dramatic shift to understand and exploit these nonlinear and mechanical mechanisms has occurred over the last few years. Specific challenges remain, such as treatment protocol planning and real-time treatment monitoring. An improved understanding of the physical mechanisms is essential to meet these challenges and to further advance therapeutic ultrasound.


Journal of the Acoustical Society of America | 2006

Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity focused ultrasound in a gel phantom

Vera A. Khokhlova; Michael R. Bailey; Justin Reed; Bryan W. Cunitz; Peter J. Kaczkowski; Lawrence A. Crum

The importance of nonlinear acoustic wave propagation and ultrasound-induced cavitation in the acceleration of thermal lesion production by high intensity focused ultrasound was investigated experimentally and theoretically in a transparent protein-containing gel. A numerical model that accounted for nonlinear acoustic propagation was used to simulate experimental conditions. Various exposure regimes with equal total ultrasound energy but variable peak acoustic pressure were studied for single lesions and lesion stripes obtained by moving the transducer. Static overpressure was applied to suppress cavitation. Strong enhancement of lesion production was observed for high amplitude waves and was supported by modeling. Through overpressure experiments it was shown that both nonlinear propagation and cavitation mechanisms participate in accelerating lesion inception and growth. Using B-mode ultrasound, cavitation was observed at normal ambient pressure as weakly enhanced echogenicity in the focal region, but was not detected with overpressure. Formation of tadpole-shaped lesions, shifted toward the transducer, was always observed to be due to boiling. Boiling bubbles were visible in the gel and were evident as strongly echogenic regions in B-mode images. These experiments indicate that nonlinear propagation and cavitation accelerate heating, but no lesion displacement or distortion was observed in the absence of boiling.


Journal of the Acoustical Society of America | 2008

Acoustic characterization of high intensity focused ultrasound fields : A combined measurement and modeling approach

Michael S. Canney; Michael R. Bailey; Lawrence A. Crum; Vera A. Khokhlova; Oleg A. Sapozhnikov

Acoustic characterization of high intensity focused ultrasound (HIFU) fields is important both for the accurate prediction of ultrasound induced bioeffects in tissues and for the development of regulatory standards for clinical HIFU devices. In this paper, a method to determine HIFU field parameters at and around the focus is proposed. Nonlinear pressure waveforms were measured and modeled in water and in a tissue-mimicking gel phantom for a 2 MHz transducer with an aperture and focal length of 4.4 cm. Measurements were performed with a fiber optic probe hydrophone at intensity levels up to 24,000 W/cm(2). The inputs to a Khokhlov-Zabolotskaya-Kuznetsov-type numerical model were determined based on experimental low amplitude beam plots. Strongly asymmetric waveforms with peak positive pressures up to 80 MPa and peak negative pressures up to 15 MPa were obtained both numerically and experimentally. Numerical simulations and experimental measurements agreed well; however, when steep shocks were present in the waveform at focal intensity levels higher than 6000 W/cm(2), lower values of the peak positive pressure were observed in the measured waveforms. This underrepresentation was attributed mainly to the limited hydrophone bandwidth of 100 MHz. It is shown that a combination of measurements and modeling is necessary to enable accurate characterization of HIFU fields.


Ultrasound in Medicine and Biology | 2001

Use of overpressure to assess the role of bubbles in focused ultrasound lesion shape in vitro

Michael R. Bailey; Lisa N. Couret; Oleg A. Sapozhnikov; Vera A. Khokhlova; Gailter Haar; Shahram Vaezy; Xuegong Shi; R. O. Y. Martin; Lawrence A. Crum

Overpressure--elevated hydrostatic pressure--was used to assess the role of gas or vapor bubbles in distorting the shape and position of a high-intensity focused ultrasound (HIFU) lesion in tissue. The shift from a cigar-shaped lesion to a tadpole-shaped lesion can mean that the wrong area is treated. Overpressure minimizes bubbles and bubble activity by dissolving gas bubbles, restricting bubble oscillation and raising the boiling temperature. Therefore, comparison with and without overpressure is a tool to assess the role of bubbles. Dissolution rates, bubble dynamics and boiling temperatures were determined as functions of pressure. Experiments were made first in a low-overpressure chamber (0.7 MPa maximum) that permitted imaging by B-mode ultrasound (US). Pieces of excised beef liver (8 cm thick) were treated in the chamber with 3.5 MHz for 1 to 7 s (50% duty cycle). In situ intensities (I(SP)) were 600 to 3000 W/cm(2). B-mode US imaging detected a hyperechoic region at the HIFU treatment site. The dissipation of this hyperechoic region following HIFU cessation corresponded well with calculated bubble dissolution rates; thus, suggesting that bubbles were present. Lesion shape was then tested in a high-pressure chamber. Intensities were 1300 and 1750 W/cm(2) ( +/- 20%) at 1 MHz for 30 s. Hydrostatic pressures were 0.1 or 5.6 MPa. At 1300 W/cm(2), lesions were cigar-shaped, and no difference was observed between lesions formed with or without overpressure. At 1750 W/cm(2), lesions formed with no overpressure were tadpole-shaped, but lesions formed with high overpressure (5.6 MPa) remained cigar-shaped. Data support the hypothesis that bubbles contribute to the lesion distortion.


Ultrasound in Medicine and Biology | 2010

Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound

Michael S. Canney; Vera A. Khokhlova; Olga V. Bessonova; Michael R. Bailey; Lawrence A. Crum

Nonlinear propagation causes high-intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have been investigated previously and found to not significantly alter high-intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves. In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm(2) was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared with calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating as a result of shock waves is therefore important to HIFU, and clinicians should be aware of the potential for very rapid boiling because it alters treatments.


Journal of the Acoustical Society of America | 2002

Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy

Oleg A. Sapozhnikov; Vera A. Khokhlova; Michael R. Bailey; James C. Williams; James A. McAteer; Robin O. Cleveland; Lawrence A. Crum

Cavitation appears to contribute to tissue injury in lithotripsy. Reports have shown that increasing pulse repetition frequency [(PRF) 0.5-100 Hz] increases tissue damage and increasing static pressure (1-3 bar) reduces cell damage without decreasing stone comminution. Our hypothesis is that overpressure or slow PRF causes unstabilized bubbles produced by one shock pulse to dissolve before they nucleate cavitation by subsequent shock pulses. The effects of PRF and overpressure on bubble dynamics and lifetimes were studied experimentally with passive cavitation detection, high-speed photography, and B-mode ultrasound and theoretically. Overpressure significantly reduced calculated (100-2 s) and measured (55-0.5 s) bubble lifetimes. At 1.5 bar static pressure, a dense bubble cluster was measured with clinically high PRF (2-3 Hz) and a sparse cluster with clinically low PRF (0.5-1 Hz), indicating bubble lifetimes of 0.5-1 s, consistent with calculations. In contrast to cavitation in water, high-speed photography showed that overpressure did not suppress cavitation of bubbles stabilized on a cracked surface. These results suggest that a judicious use of overpressure and PRF in lithotripsy could reduce cavitation damage of tissue while maintaining cavitation comminution of stones.


Journal of the Acoustical Society of America | 2001

Numerical modeling of finite-amplitude sound beams: Shock formation in the near field of a cw plane piston source

Vera A. Khokhlova; Rémi Souchon; Jahangir Tavakkoli; Oleg A. Sapozhnikov; Dominique Cathignol

Two theoretical models and the corresponding numerical codes for the description of nonlinear acoustic beams radiated from intense cw sources in water are presented. In the first model, diffraction effects are included using the Rayleigh integral, whereas nonlinearity and thermoviscous absorption are accounted for in a quasi-plane approximation. The simulations are performed in the time domain using the code previously developed for single-pulse propagation in medium having arbitrary frequency-dependent absorption. The second model is based on the Khokhlov–Zabolotskaya–Kuznetsov equation, which, contrary to the first model, accounts for diffraction in the parabolic approximation. The simulations are performed in the frequency domain using a novel algorithm that has been developed. A variable number of harmonics, which follows the nonlinear broadening of the wave spectrum are employed in the algorithm to speed up calculations. In order to prove the validity and the accuracy of the two codes developed, the ...


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2000

Numerical simulations of heating patterns and tissue temperature response due to high-intensity focused ultrasound

Francesco P. Curra; Pierre D. Mourad; Vera A. Khokhlova; Robin O. Cleveland; Lawrence A. Crum

The results of this paper show-for an existing high intensity, focused ultrasound (HIFU) transducer-the importance of nonlinear effects on the space/time properties of wave propagation and heat generation in perfused liver models when a blood vessel also might be present. These simulations are based on the nonlinear parabolic equation for sound propagation and the bio-heat equation for temperature generation. The use of high initial pressure in HIFU transducers in combination with the physical characteristics of biological tissue induces shock formation during the propagation of a therapeutic ultrasound wave. The induced shock directly affects the rate at which heat is absorbed by tissue at the focus without significant influence on the magnitude and spatial distribution of the energy being delivered. When shocks form close to the focus, nonlinear enhancement of heating is confined in a small region around the focus and generates a higher localized thermal impact on the tissue than that predicted by linear theory. The presence of a blood vessel changes the spatial distribution of both the heating rate and temperature.


Journal of the Acoustical Society of America | 2011

Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling

Tatiana D. Khokhlova; Michael S. Canney; Vera A. Khokhlova; Oleg A. Sapozhnikov; Lawrence A. Crum; Michael R. Bailey

In high intensity focused ultrasound (HIFU) applications, tissue may be thermally necrosed by heating, emulsified by cavitation, or, as was recently discovered, emulsified using repetitive millisecond boiling caused by shock wave heating. Here, this last approach was further investigated. Experiments were performed in transparent gels and ex vivo bovine heart tissue using 1, 2, and 3 MHz focused transducers and different pulsing schemes in which the pressure, duty factor, and pulse duration were varied. A previously developed derating procedure to determine in situ shock amplitudes and the time-to-boil was refined. Treatments were monitored using B-mode ultrasound. Both inertial cavitation and boiling were observed during exposures, but emulsification occurred only when shocks and boiling were present. Emulsified lesions without thermal denaturation were produced with shock amplitudes sufficient to induce boiling in less than 20 ms, duty factors of less than 0.02, and pulse lengths shorter than 30 ms. Higher duty factors or longer pulses produced varying degrees of thermal denaturation combined with mechanical emulsification. Larger lesions were obtained using lower ultrasound frequencies. The results show that shock wave heating and millisecond boiling is an effective and reliable way to emulsify tissue while monitoring the treatment with ultrasound.


Acoustical Physics | 2001

Effect of Acoustic Nonlinearity on Heating of Biological Tissue by High-Intensity Focused Ultrasound

E.A. Filonenko; Vera A. Khokhlova

Effect of strong acoustic nonlinearity on the efficiency of heating of a biological tissue by high-intensity focused ultrasound in the modes of operation used in real clinical setups is studied. The spatial distributions of thermal sources and the corresponding temperature increments caused by ultrasonic absorption are analyzed. Numerical algorithms are developed for simulating the nonlinear focusing of ultrasound in the calculations of both the heat sources on the basis of the Khokhlov-Zabolotskaya-Kuznetsov-type equations and the temperature field in a tissue on the basis of an inhomogeneous thermal conduction equation with a relaxation term. It is demonstrated that in the mode of operation typical of acoustic surgery, the nonlinearity improves the locality of heating and leads to an increase in the power of thermal sources in the focus by approximately an order of magnitude. The diffusion phenomena in the tissue lead to a smoothing of the spatial temperature distributions, as compared to the distributions of thermal sources. In the case of one-second exposure in the nonlinear mode of focusing, the maximal temperature in the focus exceeds the values obtained in the approximation of linear wave propagation by a factor of three.

Collaboration


Dive into the Vera A. Khokhlova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wayne Kreider

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yak-Nam Wang

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge