Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vera Eremina is active.

Publication


Featured researches published by Vera Eremina.


Journal of Clinical Investigation | 2003

Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases

Vera Eremina; Manish M. Sood; Jody J. Haigh; Andras Nagy; Ginette Lajoie; Napoleone Ferrara; Hans Gerber; Yamato Kikkawa; Jeffrey H. Miner; Susan E. Quaggin

Kidney disease affects over 20 million people in the United States alone. Although the causes of renal failure are diverse, the glomerular filtration barrier is often the target of injury. Dysregulation of VEGF expression within the glomerulus has been demonstrated in a wide range of primary and acquired renal diseases, although the significance of these changes is unknown. In the glomerulus, VEGF-A is highly expressed in podocytes that make up a major portion of the barrier between the blood and urinary spaces. In this paper, we show that glomerular-selective deletion or overexpression of VEGF-A leads to glomerular disease in mice. Podocyte-specific heterozygosity for VEGF-A resulted in renal disease by 2.5 weeks of age, characterized by proteinuria and endotheliosis, the renal lesion seen in preeclampsia. Homozygous deletion of VEGF-A in glomeruli resulted in perinatal lethality. Mutant kidneys failed to develop a filtration barrier due to defects in endothelial cell migration, differentiation, and survival. In contrast, podocyte-specific overexpression of the VEGF-164 isoform led to a striking collapsing glomerulopathy, the lesion seen in HIV-associated nephropathy. Our data demonstrate that tight regulation of VEGF-A signaling is critical for establishment and maintenance of the glomerular filtration barrier and strongly supports a pivotal role for VEGF-A in renal disease.


The New England Journal of Medicine | 2008

VEGF Inhibition and Renal Thrombotic Microangiopathy

Vera Eremina; J. Ashley Jefferson; Jolanta Kowalewska; Howard S. Hochster; Mark Haas; Joseph Weisstuch; Catherine Richardson; Jeffrey B. Kopp; M. Golam Kabir; Peter H. Backx; Hans Gerber; Napoleone Ferrara; Laura Barisoni; Charles E. Alpers; Susan E. Quaggin

The glomerular microvasculature is particularly susceptible to injury in thrombotic microangiopathy, but the mechanisms by which this occurs are unclear. We report the cases of six patients who were treated with bevacizumab, a humanized monoclonal antibody against vascular endothelial growth factor (VEGF), in whom glomerular disease characteristic of thrombotic microangiopathy developed. To show that local reduction of VEGF within the kidney is sufficient to trigger the pathogenesis of thrombotic microangiopathy, we used conditional gene targeting to delete VEGF from renal podocytes in adult mice; this resulted in a profound thrombotic glomerular injury. These observations provide evidence that glomerular injury in patients who are treated with bevacizumab is probably due to direct targeting of VEGF by antiangiogenic therapy.


Nature | 2006

Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes.

Nina Jones; Ivan M. Blasutig; Vera Eremina; Julie Ruston; Friedhelm Bladt; Hongping Li; Haiming Huang; Louise Larose; Shawn S.-C. Li; Tomoko Takano; Susan E. Quaggin; Tony Pawson

The glomerular filtration barrier in the kidney is formed in part by a specialized intercellular junction known as the slit diaphragm, which connects adjacent actin-based foot processes of kidney epithelial cells (podocytes). Mutations affecting a number of slit diaphragm proteins, including nephrin (encoded by NPHS1), lead to renal disease owing to disruption of the filtration barrier and rearrangement of the actin cytoskeleton, although the molecular basis for this is unclear. Here we show that nephrin selectively binds the Src homology 2 (SH2)/SH3 domain-containing Nck adaptor proteins, which in turn control the podocyte cytoskeleton in vivo. The cytoplasmic tail of nephrin has multiple YDxV sites that form preferred binding motifs for the Nck SH2 domain once phosphorylated by Src-family kinases. We show that this Nck–nephrin interaction is required for nephrin-dependent actin reorganization. Selective deletion of Nck from podocytes of transgenic mice results in defects in the formation of foot processes and in congenital nephrotic syndrome. Together, these findings identify a physiological signalling pathway in which nephrin is linked through phosphotyrosine-based interactions to Nck adaptors, and thus to the underlying actin cytoskeleton in podocytes. Simple and widely expressed SH2/SH3 adaptor proteins can therefore direct the formation of a specialized cellular morphology in vivo.


Nature Genetics | 2008

Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease

Sakura Saburi; Ian Hester; Evelyne Fischer; Marco Pontoglio; Vera Eremina; Manfred Gessler; Susan E. Quaggin; Robert V. Harrison; Richard J. Mount; Helen McNeill

Tissue organization in Drosophila is regulated by the core planar cell polarity (PCP) proteins Frizzled, Dishevelled, Prickle, Van Gogh and Flamingo. Core PCP proteins are conserved in mammals and function in mammalian tissue organization. Recent studies have identified another group of Drosophila PCP proteins, consisting of the protocadherins Fat and Dachsous (Ds) and the transmembrane protein Four-jointed (Fj). In Drosophila, Fat represses fj transcription, and Ds represses Fat activity in PCP. Here we show that Fat4 is an essential gene that has a key role in vertebrate PCP. Loss of Fat4 disrupts oriented cell divisions and tubule elongation during kidney development, leading to cystic kidney disease. Fat4 genetically interacts with the PCP genes Vangl2 and Fjx1 in cyst formation. In addition, Fat4 represses Fjx1 expression, indicating that Fat signaling is conserved. Together, these data suggest that Fat4 regulates vertebrate PCP and that loss of PCP signaling may underlie some cystic diseases in humans.


Nephron Physiology | 2007

Role of the VEGF-A Signaling Pathway in the Glomerulus: Evidence for Crosstalk between Components of the Glomerular Filtration Barrier

Vera Eremina; Hans J. Baelde; Susan E. Quaggin

Background/Aims: Vascular endothelial growth factor is a major regulator of angiogenesis and vascular permeability [Carmeliet et al.: Nature 1996;380:435–439]. The podocyte, the outermost layer of the glomerular filtration barrier, produces large amounts of VEGF-A. The observation that levels of VEGF-A are altered in glomerular diseases, the identification of a link between pre-eclampsia and elevated levels of a circulating soluble VEGF receptor, and the entry of anti-VEGF therapies into the clinical arena have generated intense interest in the functional role of VEGF-A in the glomerulus. Methods: A variety of studies have been performed to address the role of VEGF-A signaling in the glomerulus. These include descriptions of expression patterns in human renal biopsies, cell culture studies to dissect paracrine versus autocrine signaling roles, and manipulation of VEGF-A expression in animal models using pharmacologic, biologic or genetic approaches. Results: Exquisite dosage sensitivity to VEGF-A exists in the developing glomerulus as small reductions in the expression of VEGF-A lead to profound changes in glomerular structure and function in mice. The use of VEGF inhibitors is associated with damage to the glomerular endothelium in animal models and proteinuria in patients, suggesting that local VEGF-A production is also required for maintenance of this specialized vascular bed. Conclusions: Tight regulation of VEGF-A signaling is required for development and maintenance of the glomerular filtration barrier (GFB) and emphasizes the role of podocyte-endothelial crosstalk in the glomerulus. The relative contributions of various VEGF-A isoforms, the role of autocrine signaling in vivo and identification of factors and mechanisms that regulate constitutive expression, storage and delivery of VEGF-A in the glomerulus are still under investigation.


Journal of The American Society of Nephrology | 2010

Glomerular Structure and Function Require Paracrine, Not Autocrine, VEGF–VEGFR-2 Signaling

Karen Sison; Vera Eremina; Hans J. Baelde; Wang Min; Masanori Hirashima; I. George Fantus; Susan E. Quaggin

VEGF is a potent vascular growth factor produced by podocytes in the developing and mature glomerulus. Specific deletion of VEGF from podocytes causes glomerular abnormalities including profound endothelial cell injury, suggesting that paracrine signaling is critical for maintaining the glomerular filtration barrier (GFB). However, it is not clear whether normal GFB function also requires autocrine VEGF signaling in podocytes. In this study, we sought to determine whether an autocrine VEGF-VEGFR-2 loop in podocytes contributes to the maintenance of the GFB in vivo. We found that induced, whole-body deletion of VEGFR-2 caused marked abnormalities in the kidney and also other tissues, including the heart and liver. By contrast, podocyte-specific deletion of the VEGFR-2 receptor had no effect on glomerular development or function even up to 6 months old. Unlike cell culture models, enhanced expression of VEGF by podocytes in vivo caused foot process fusion and alterations in slit diaphragm-associated proteins; however, inhibition of VEGFR-2 could not rescue this defect. Although VEGFR-2 was dispensable in the podocyte, glomerular endothelial cells depended on VEGFR-2 expression: postnatal deletion of the receptor resulted in global defects in the glomerular microvasculature. Taken together, our results provide strong evidence for dominant actions of a paracrine VEGF-VEGFR-2 signaling loop both in the developing and in the filtering glomerulus. VEGF produced by the podocyte regulates the structure and function of the adjacent endothelial cell.


Current Opinion in Nephrology and Hypertension | 2004

The role of VEGF-A in glomerular development and function.

Vera Eremina; Susan E. Quaggin

Purpose of reviewVascular endothelial growth factor is a major regulator of blood vessel biology and is highly expressed in presumptive and mature podocytes within the glomerulus. It has long been recognized that dysregulation of this factor occurs in a number of glomerular diseases; however, definitive proof that it plays a pathogenic or developmental role in glomerular biology has remained elusive. This review will summarize some of the recent advances in our understanding of the role(s) of VEGF in these processes. Recent findingsGene targeting in the mouse has shown that tight regulation of vascular endothelial growth factor is required for development and maintenance of the glomerular filtration barrier. Podocyte-specific deletion of both alleles leads to congenital nephropathy and perinatal lethality. The glomeruli of mice that lack the 164 and 184 isoforms but express the 120 isoform, are smaller and have fewer capillary loops, whereas mice with podocyte-specific haploinsufficiency for all isoforms develop glomerular endotheliosis, the renal lesion seen in preeclampsia. Elevated levels of the soluble vascular endothelial growth factor receptor 1, which binds and inhibits circulating forms of VEGF were identified in patients with preeclampsia; rats injected with this soluble receptor develop hypertension, endotheliosis and proteinuria, similar to the lesion seen in podocyte-specific haploinsufficient VEGF mice. Conversely, podocyte-specific overexpression of the 164 isoform leads to collapsing glomerulopathy, the classic lesion seen in HIV-associated nephropathy. SummaryThese results demonstrate that vascular endothelial growth factor plays a critical role in glomerular development and function, and provides the foundation to develop novel diagnostic or therapeutic tools for patients with glomerular disease.


Developmental Biology | 2008

β1 integrin expression by podocytes is required to maintain glomerular structural integrity

Ambra Pozzi; George Jarad; Gilbert W. Moeckel; Sergio Coffa; Xi Zhang; Leslie Gewin; Vera Eremina; Billy G. Hudson; Dorin-Bogdan Borza; Raymond C. Harris; Lawrence B. Holzman; Carrie L. Phillips; Reinhard Fässler; Susan E. Quaggin; Jeffrey H. Miner; Roy Zent

Integrins are transmembrane heteromeric receptors that mediate interactions between cells and extracellular matrix (ECM). beta1, the most abundantly expressed integrin subunit, binds at least 12 alpha subunits. beta1 containing integrins are highly expressed in the glomerulus of the kidney; however their role in glomerular morphogenesis and maintenance of glomerular filtration barrier integrity is poorly understood. To study these questions we selectively deleted beta1 integrin in the podocyte by crossing beta1(flox/flox) mice with podocyte specific podocin-cre mice (pod-Cre), which express cre at the time of glomerular capillary formation. We demonstrate that podocyte abnormalities are visualized during glomerulogenesis of the pod-Cre;beta1(flox/flox) mice and proteinuria is present at birth, despite a grossly normal glomerular basement membrane. Following the advent of glomerular filtration there is progressive podocyte loss and the mice develop capillary loop and mesangium degeneration with little evidence of glomerulosclerosis. By 3 weeks of age the mice develop severe end stage renal failure characterized by both tubulointerstitial and glomerular pathology. Thus, expression of beta1 containing integrins by the podocyte is critical for maintaining the structural integrity of the glomerulus.


Journal of The American Society of Nephrology | 2009

Nck Proteins Maintain the Adult Glomerular Filtration Barrier

Nina Jones; Laura A. New; Megan A. Fortino; Vera Eremina; Julie Ruston; Ivan M. Blasutig; Lamine Aoudjit; Youling Zou; Xiuwen Liu; Guo Liang Yu; Tomoko Takano; Susan E. Quaggin; Tony Pawson

Within the glomerulus, the scaffolding protein nephrin bridges the actin-rich foot processes that extend from adjacent podocytes to form the slit diaphragm. Mutations affecting a number of slit diaphragm proteins, including nephrin, cause glomerular disease through rearrangement of the actin cytoskeleton and disruption of the filtration barrier. We recently established that the Nck family of Src homology 2 (SH2)/SH3 cytoskeletal adaptor proteins can mediate nephrin-dependent actin reorganization. Formation of foot processes requires expression of Nck in developing podocytes, but it is unknown whether Nck maintains podocyte structure and function throughout life. Here, we used an inducible transgenic strategy to delete Nck expression in adult mouse podocytes and found that loss of Nck expression rapidly led to proteinuria, glomerulosclerosis, and altered morphology of foot processes. We also found that podocyte injury reduced phosphorylation of nephrin in adult kidneys. These data suggest that Nck is required to maintain adult podocytes and that phosphotyrosine-based interactions with nephrin may occur in foot processes of resting, mature podocytes.


Diabetes | 2012

Vegfa Protects the Glomerular Microvasculature in Diabetes

Gavasker A. Sivaskandarajah; Marie Jeansson; Yoshiro Maezawa; Vera Eremina; Hans J. Baelde; Susan E. Quaggin

Vascular endothelial growth factor A (VEGFA) expression is increased in glomeruli in the context of diabetes. Here, we tested the hypothesis that this upregulation of VEGFA protects the glomerular microvasculature in diabetes and that therefore inhibition of VEGFA will accelerate nephropathy. To determine the role of glomerular Vegfa in the development and progression of diabetic nephropathy, we used an inducible Cre-loxP gene-targeting system that enabled genetic deletion of Vegfa selectively from glomerular podocytes of wild-type or diabetic mice. Type 1 diabetes was induced in mice using streptozotocin (STZ). We then assessed the extent of glomerular dysfunction by measuring proteinuria, glomerular pathology, and glomerular cell apoptosis. Vegfa expression increased in podocytes in the STZ model of diabetes. After 7 weeks of diabetes, diabetic mice lacking Vegfa in podocytes exhibited significantly greater proteinuria with profound glomerular scarring and increased apoptosis compared with control mice with diabetes or Vegfa deletion without diabetes. Reduced local production of glomerular Vegfa in a mouse model of type 1 diabetes promotes endothelial injury accelerating the progression of glomerular injury. These results suggest that upregulation of VEGFA in diabetic kidneys protects the microvasculature from injury and that reduction of VEGFA in diabetes may be harmful.

Collaboration


Dive into the Vera Eremina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey H. Miner

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoko Takano

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Hans J. Baelde

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles E. Alpers

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge