Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vera Jankowski is active.

Publication


Featured researches published by Vera Jankowski.


Journal of The American Society of Nephrology | 2007

Advances in Urinary Proteome Analysis and Biomarker Discovery

Danilo Fliser; Jan Novak; Visith Thongboonkerd; Àngel Argilés; Vera Jankowski; Mark A. Girolami; Joachim Jankowski; Harald Mischak

Noninvasive diagnosis of kidney diseases and assessment of the prognosis are still challenges in clinical nephrology. Definition of biomarkers on the basis of proteome analysis, especially of the urine, has advanced recently and may provide new tools to solve those challenges. This article highlights the most promising technological approaches toward deciphering the human proteome and applications of the knowledge in clinical nephrology, with emphasis on the urinary proteome. The data in the current literature indicate that although a thorough investigation of the entire urinary proteome is still a distant goal, clinical applications are already available. Progress in the analysis of human proteome in health and disease will depend more on the standardization of data and availability of suitable bioinformatics and software solutions than on new technological advances. It is predicted that proteomics will play an important role in clinical nephrology in the very near future and that this progress will require interactive dialogue and collaboration between clinicians and analytical specialists.


Circulation Research | 2013

Discovery and Characterization of Alamandine, a Novel Component of the Renin-Angiotensin System

Roberto Queiroga Lautner; Daniel C. Villela; R. A. Fraga-Silva; Neiva Silva; Thiago Verano-Braga; Fabiana P. Costa-Fraga; Joachim Jankowski; Vera Jankowski; Frederico B. De Sousa; Andréia Carvalho Alzamora; Everton Soares; Claudiane Barbosa; Frank Kjeldsen; Aline de Oliveira; Janaina F Braga; Silvia Quintao Savergnini; Gisele Maia; Antonio Bastos Peluso; Danielle Passos-Silva; Anderson J. Ferreira; Fabiana Alves; Almir S. Martins; Mohan K. Raizada; Renata Cristina de Paula; Daisy Motta-Santos; Friederike Kemplin; Adriano M.C. Pimenta; Natalia Alenina; Rubén D. Sinisterra; Michael Bader

Rationale: The renin–angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1–7). Objective: To characterize a novel component of the RAS, alamandine. Methods and Results: Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1–7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1–7), including vasodilation, antifibrosis, antihypertensive, and central effects. Interestingly, our data reveal that its actions are independent of the known vasodilator receptors of the RAS, Mas, and angiotensin II type 2 receptor. Rather, we demonstrate that alamandine acts through the Mas-related G-protein–coupled receptor, member D. Binding of alamandine to Mas-related G-protein–coupled receptor, member D is blocked by D-Pro7-angiotensin-(1–7), the Mas-related G-protein–coupled receptor, member D ligand β-alanine and PD123319, but not by the Mas antagonist A-779. In addition, oral administration of an inclusion compound of alamandine/β-hydroxypropyl cyclodextrin produced a long-term antihypertensive effect in spontaneously hypertensive rats and antifibrotic effects in isoproterenol-treated rats. Alamandine had no noticeable proliferative or antiproliferative effect in human tumoral cell lines. Conclusions: The identification of these 2 novel components of the RAS, alamandine and its receptor, provides new insights for the understanding of the physiological and pathophysiological role of the RAS and may help to develop new therapeutic strategies for treating human cardiovascular diseases and other related disorders. # Novelty and Significance {#article-title-32}Rationale: The renin–angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1–7). Objective: To characterize a novel component of the RAS, alamandine. Methods and Results: Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1–7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1–7), including vasodilation, antifibrosis, antihypertensive, and central effects. Interestingly, our data reveal that its actions are independent of the known vasodilator receptors of the RAS, Mas, and angiotensin II type 2 receptor. Rather, we demonstrate that alamandine acts through the Mas-related G-protein–coupled receptor, member D. Binding of alamandine to Mas-related G-protein–coupled receptor, member D is blocked by D-Pro7-angiotensin-(1–7), the Mas-related G-protein–coupled receptor, member D ligand &bgr;-alanine and PD123319, but not by the Mas antagonist A-779. In addition, oral administration of an inclusion compound of alamandine/&bgr;-hydroxypropyl cyclodextrin produced a long-term antihypertensive effect in spontaneously hypertensive rats and antifibrotic effects in isoproterenol-treated rats. Alamandine had no noticeable proliferative or antiproliferative effect in human tumoral cell lines. Conclusions: The identification of these 2 novel components of the RAS, alamandine and its receptor, provides new insights for the understanding of the physiological and pathophysiological role of the RAS and may help to develop new therapeutic strategies for treating human cardiovascular diseases and other related disorders.


Circulation Research | 2005

Immunomodulator FTY720 Induces eNOS-Dependent Arterial Vasodilatation via the Lysophospholipid Receptor S1P3

Markus Tölle; Bodo Levkau; Petra Keul; Volker Brinkmann; G. Giebing; Gilbert Schönfelder; Michael Schäfers; Karin von Wnuck Lipinski; Joachim Jankowski; Vera Jankowski; Jerold Chun; Walter Zidek; Markus van der Giet

The novel immunomodulator FTY720 is effective in experimental models of transplantation and autoimmunity, and is currently undergoing Phase III clinical trials for prevention of kidney graft rejection. FTY720 is a structural analogue of sphingosine-1-phosphate (S1P) and activates several of the S1P receptors. We show that FTY720 induces endothelium-dependent arterial vasodilation in phenylephrine precontracted mouse aortae. Vasodilation did not occur in thoracic aortic rings from eNOS-deficient mice, implicating and effect dependent of activation of the eNOS/NO pathway. Accordingly, FTY720 induced NO release, Akt-dependent eNOS phosphorylation and activation in human endothelial cells. For biological efficacy, FTY720 required endogenous phosphorylation, since addition of the sphingosine kinase antagonist N′,N-dimethylsphingosine (DMS) prevented activation of eNOS in vitro and inhibited vasodilation in isolated arteries. The endothelial phosphorylation of FTY720 was extremely rapid with almost complete conversion after 10 minutes as determined by mass spectrometry. Finally, we identified the lysophospholipid receptor S1P3 as the S1P receptor responsible for arterial vasodilation by FTY720, as the effect was completely abolished in arteries from S1P3-deficient mice. In summary, we have identified FTY720 as the first immunomodulator for prevention of organ graft rejection in clinical development that, in addition, positively affects the endothelium by stimulating NO production, and thus potentially displaying beneficial effects on transplant survival beyond classical T cell immunosuppression.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2006

Mass-Spectrometric Identification of a Novel Angiotensin Peptide in Human Plasma

Vera Jankowski; Raymond Vanholder; Markus van der Giet; Markus Tölle; Sevil Karadogan; Johan Gobom; Jens Furkert; Alexander Oksche; Eberhard Krause; Thi Nguyet Anh Tran; Martin Tepel; Mirjam Schuchardt; Hartmut Schlüter; Annette Wiedon; Michael Beyermann; Michael Bader; Mihail Todiras; Walter Zidek; Joachim Jankowski

Objective—Angiotensin peptides play a central role in cardiovascular physiology and pathology. Among these peptides, angiotensin II (Ang II) has been investigated most intensively. However, further angiotensin peptides such as Ang 1-7, Ang III, and Ang IV also contribute to vascular regulation, and may elicit additional, different, or even opposite effects to Ang II. Here, we describe a novel Ang II-related, strong vasoconstrictive substance in plasma from healthy humans and end-stage renal failure patients. Methods and Results—Chromatographic purification and structural analysis by matrix-assisted laser desorption/ionisation time-of-flight/time-of-flight (MALDI-TOF/TOF) revealed an angiotensin octapeptide with the sequence Ala-Arg-Val-Tyr-Ile-His-Pro-Phe, which differs from Ang II in Ala1 instead of Asp1. Des[Asp1]-[Ala1]-Ang II, in the following named Angiotensin A (Ang A), is most likely generated enzymatically. In the presence of mononuclear leukocytes, Ang II is converted to Ang A by decarboxylation of Asp1. Ang A has the same affinity to the AT1 receptor as Ang II, but a higher affinity to the AT2 receptor. In the isolated perfused rat kidney, Ang A revealed a smaller vasoconstrictive effect than Ang II, which was not modified in the presence of the AT2 receptor antagonist PD 123319, suggesting a lower intrinsic activity at the AT1 receptor. Ang II and Ang A concentrations in plasma of healthy subjects and end-stage renal failure patients were determined by matrix-assisted laser desorption/ionisation mass-analysis, because conventional enzyme immunoassay for Ang II quantification did not distinguish between Ang II and Ang A. In healthy subjects, Ang A concentrations were less than 20% of the Ang II concentrations, but the ratio Ang A / Ang II was higher in end-stage renal failure patients. Conclusion—Ang A is a novel human strong vasoconstrictive angiotensin-derived peptide, most likely generated by enzymatic transformation through mononuclear leukocyte-derived aspartate decarboxylase. Plasma Ang A concentration is increased in end-stage renal failure. Because of its stronger agonism at the AT2 receptor, Ang A may modulate the harmful effects of Ang II.


Journal of Clinical Investigation | 2003

Increased plasma phenylacetic acid in patients with end-stage renal failure inhibits iNOS expression

J. Jankowski; M. Van Der Giet; Vera Jankowski; Sven Schmidt; M. Hemeier; B. Mahn; G. Giebing; M. Tölle; H. Luftmann; Hartmut Schlüter; W. Zidek; Martin Tepel

NO prevents atherogenesis and inflammation in vessel walls by inhibition of cell proliferation and cytokine-induced endothelial expression of adhesion molecules and proinflammatory cytokines. Reduced NO production due to inhibition of either eNOS or iNOS may therefore reinforce atherosclerosis. Patients with end-stage renal failure show markedly increased mortality due to atherosclerosis. In the present study we tested the hypothesis that uremic toxins are responsible for reduced iNOS expression. LPS-induced iNOS expression in mononuclear leukocytes was studied using real-time PCR. The iNOS expression was blocked by addition of plasma from patients with end-stage renal failure, whereas plasma from healthy controls had no effect. Hemofiltrate obtained from patients with end-stage renal failure was fractionated by chromatographic methods. The chromatographic procedures revealed a homogenous fraction that inhibits iNOS expression. Using gas chromatography/mass spectrometry, this inhibitor was identified as phenylacetic acid. Authentic phenylacetic acid inhibited iNOS expression in a dose-dependent manner. In healthy control subjects, plasma concentrations were below the detection level, whereas patients with end-stage renal failure had a phenylacetic acid concentration of 3.49 +/- 0.33 mmol/l (n = 41). It is concluded that accumulation of phenylacetic acid in patients with end-stage renal failure inhibits iNOS expression. That mechanism may contribute to increased atherosclerosis and cardiovascular morbidity in patients with end-stage renal failure.


Cardiovascular Research | 2012

High-density lipoprotein loses its anti-inflammatory capacity by accumulation of pro-inflammatory-serum amyloid A

Markus Tölle; Tao Huang; Mirjam Schuchardt; Vera Jankowski; Nicole Prüfer; Joachim Jankowski; Uwe J. F. Tietge; Walter Zidek; Markus van der Giet

AIMS High-density lipoprotein (HDL) is known to have potent anti-inflammatory properties. Monocyte chemoattractant protein-1 is an important pro-inflammatory cytokine in early atherogenesis. There is evidence that HDL can lose its protective function during inflammatory disease. In patients with end-stage renal disease (ESRD), epidemiological studies have documented that the inverse correlation between HDL-cholesterol and cardiovascular risk is lost. Many structural modifications leading to reduced HDL function have been characterized, but the functional consequences are not fully understood. METHODS AND RESULTS We showed that HDL from patients with ESRD has a lower anti-inflammatory potential by reduced inhibition of monocyte chemoattractant protein-1 formation in vascular smooth muscle cells. Via a proteomic approach, we identified proteins in HDL from ESRD patients exerting pro-inflammatory actions. By chromatographic separation of proteins and mass-spectrometric analysis, we found serum amyloid A (SAA) to be one molecule acting as a potent pro-inflammatory protein. SAA is enriched in HDL from ESRD patients, correlating with reduced anti-inflammatory capacity. In SAA signal transduction, activation of formyl-peptide receptor 2 is involved. SAA enrichment in HDL of healthy subjects reduced the anti-inflammatory capacity of HDL and correlated with its decreased function. CONCLUSION These results suggest that SAA enrichment of HDL during disease conditions contributes to the decreased protective function. It is a novel finding that SAA acts as a pro-inflammatory molecule to reduce the anti-inflammatory properties of HDL.


American Journal of Nephrology | 2012

Relationship between Magnesium and Clinical Biomarkers on Inhibition of Vascular Calcification

Silvia Salem; Heike Bruck; Ferdinand H. Bahlmann; Mirjam E. Peter; Jutta Passlick-Deetjen; Axel Kretschmer; Sonja Steppan; Michaela Volsek; Andreas Kribben; Marc Nierhaus; Vera Jankowski; Walter Zidek; Joachim Jankowski

Background: Arteriosclerosis and cardiovascular disease are strongly associated with vascular calcification. Hyperphosphatemia is an essential risk factor for increased vascular calcification. End-stage renal disease (ESRD) patients could serve as an in vivo model for accelerated calcification. This study focuses on the most likely protective effects of magnesium ion (Mg2+) on phosphate-induced vascular calcification ex vivo/in vitro. Furthermore, plasma Mg2+ concentrations of ESRD and healthy controls were investigated for association with surrogate parameters of vascular calcification in vivo. Methods: Aortic segments of male Wistar-Kyoto rats were incubated and the phosphate concentration of the medium was elevated. The aortic segments were incubated in the absence and presence of MgCl2; tissue calcification was quantified by different methods. Serum Mg2+ concentrations of patients with chronic kidney disease (CKD stage 5; ESRD) and patients without CKD (controls) were associated with carotid intima media thickness (IMT) and aortic pulse wave velocity (PWV) as surrogate parameter for arteriosclerosis and arterial stiffening. Results: Incubation of aortic segments in the presence of β-glycerophosphate and NaH2PO4 caused an increased tissue Ca2+ deposition compared to control conditions. This increased amount of Ca2+ in the aortic rings was significantly decreased in the presence of Mg2+. In CKD patients, but not in controls, magnesium serum concentration was associated with the IMT of the carotid arteries. In addition, CKD patients with higher magnesium serum concentration had a significantly lower PWV. Discussion and Conclusion: Elevated phosphate concentrations in the culture media induce ex vivo/in vitro medial calcification in intact rat aortic rings in the presence of alkaline phosphatase. Mg2+ ions reduced ex vivo/in vitro vascular calcification despite increased phosphate concentration. This hypothesis is additionally based on the fact that CKD patients with high Mg2 serum levels had significantly lower IMT and PWV values, which may result in a lower risk for cardiovascular events and mortality in these patients. Therefore, Mg2+ supplementation may be an option for treatment and prevention of vascular calcification resulting in a reduction of cardiovascular events in CKD patients.


European Heart Journal | 2014

Carbamylated low-density lipoprotein induces endothelial dysfunction

Thimoteus Speer; Frederick O. Owala; Erik W. Holy; Stephen Zewinger; Felix L. Frenzel; Barbara E. Stähli; Marjan Razavi; Sarah Triem; Hrvoje Cvija; Lucia Rohrer; Sarah Seiler; Gunnar H. Heine; Vera Jankowski; Joachim Jankowski; Giovanni G. Camici; Alexander Akhmedov; Danilo Fliser; Thomas F. Lüscher; Felix C. Tanner

AIMS Cardiovascular events remain the leading cause of death in Western world. Atherosclerosis is the most common underlying complication driven by low-density lipoproteins (LDL) disturbing vascular integrity. Carbamylation of lysine residues, occurring primarily in the presence of chronic kidney disease (CKD), may affect functional properties of lipoproteins; however, its effect on endothelial function is unknown. METHODS AND RESULTS Low-density lipoprotein from healthy donors was isolated and carbamylated. Vascular reactivity after treatment with native LDL (nLDL) or carbamylated LDL (cLDL) was examined in organ chambers for isometric tension recording using aortic rings of wild-type or lectin-like-oxidized LDL receptor-1 (LOX-1) transgenic mice. Reactive oxygen species (ROS) and nitric oxide (NO) production were determined using electron spin resonance spectroscopy. The effect of LDL-carbamyl-lysine levels on cardiovascular outcomes was determined in patients with CKD during a median follow-up of 4.7 years. Carbamylated LDL impaired endothelium-dependent relaxation to acetylcholine or calcium-ionophore A23187, but not endothelium-independent relaxation to sodium nitroprusside. In contrast, nLDL had no effect. Carbamylated LDL enhanced aortic ROS production by activating NADPH-oxidase. Carbamylated LDL stimulated endothelial NO synthase (eNOS) uncoupling at least partially by promoting S-glutathionylation of eNOS. Carbamylated LDL-induced endothelial dysfunction was enhanced in LOX-1 transgenic mice. In patients with CKD, LDL-carbamyl-lysine levels were significant predictors for cardiovascular events and all-cause mortality. CONCLUSIONS Carbamylation of LDL induces endothelial dysfunction via LOX-1 activation and increased ROS production leading to eNOS uncoupling. This indicates a novel mechanism in the pathogenesis of atherosclerotic disease which may be pathogenic and prognostic in patients with CKD and high plasma levels of cLDL.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2003

Identification and Quantification of Diadenosine Polyphosphate Concentrations in Human Plasma

Joachim Jankowski; Vera Jankowski; Udo Laufer; Markus van der Giet; Lars Henning; Martin Tepel; Walter Zidek; Hartmut Schlüter

Objective—Diadenosine polyphosphates have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. In this study we investigated the question of whether diadenosine polyphosphates are present in human plasma and whether a potential source can be identified that may release diadenosine polyphosphates into the circulation. Methods and Results—Plasma diadenosine polyphosphates (ApnA with n=3 to 6) were purified to homogeneity by affinity-, anion exchange-, and reversed phase-chromatography from deproteinized human plasma. Analysis of the homogeneous fractions with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) revealed molecular masses ([M+H]+) of 757, 837, 917, and 997 d. Comparison of the postsource decay matrix-assisted laser desorption/ionization mass spectrometry mass spectra of these fractions with those of authentic diadenosine polyphosphates revealed that these isolated substances were identical to Ap3A, Ap4A, Ap5A, and Ap6A. Enzymatic analysis showed an interconnection of the phosphate groups with the adenosines in the 5′-positions of the ribose moieties. The mean total plasma diadenosine polyphosphate concentrations (&mgr;mol/L; mean ± SEM) in cubital veins of normotensive subjects amounted to 0.89±0.59 for Ap3A, 0.72±0.72 for Ap4A, 0.33±0.24 for Ap5A, and 0.18±0.18 for Ap6A. Cubital venous plasma diadenosine polyphosphate concentrations from normotensives did not differ significantly from those in the hypertensive patients studied. There was no significant difference between arterial and venous diadenosine polyphosphate plasma concentrations in 5 hemodialysis patients, making a significant degradation by capillary endothelial cells unlikely. Free plasma diadenosine polyphosphate concentrations are considerably lower than total plasma concentrations because approximately 95% of the plasma diadenosine polyphosphates were bound to proteins. There were no significant differences in the diadenosine polyphosphate plasma concentrations depending on the method of blood sampling and anticoagulation, suggesting that platelet aggregation does not artificially contribute to plasma diadenosine polyphosphate levels in significant amounts.The ApnA (with n=3 to 6) total plasma concentrations in adrenal veins were significantly higher than the plasma concentrations in both infrarenal and suprarenal vena cava: adrenal veins: Ap3A, 4.05±1.63; Ap4A, 6.18±2.08; Ap5A, 0.53±0.28; Ap6A, 0.59±0.31; infrarenal vena cava: Ap3A, 1.25±0.66; Ap4A, 0.91±0.54; Ap5A, 0.25±0.12; Ap6A, 0.11±0.06; suprarenal vena cava: Ap3A, 1.40±0.91; Ap4A, 1.84±1.20; Ap5A, 0.33±0.13; Ap6A, 0.11±0.07 (&mgr;mol/L; mean ± SEM; each P <0.05 (concentration of adrenal veins versus infrarenal or suprarenal veins, respectively). Conclusion—The presence of diadenosine polyphosphates in physiologically relevant concentrations in human plasma was demonstrated. Because in adrenal venous plasma significantly higher diadenosine polyphosphate concentrations were measured than in plasma from the infrarenal and suprarenal vena cava, it can be assumed that, beside platelets, the adrenal medulla may be a source of plasma diadenosine polyphosphates in humans.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

Increased Uridine Adenosine Tetraphosphate Concentrations in Plasma of Juvenile Hypertensives

Vera Jankowski; Andreas-Alexander Meyer; Peter Schlattmann; Yu Gui; Xi-long Zheng; Irini Stamcou; Kristina Radtke; Thi Nguyet Anh Tran; Markus van der Giet; Markus Tölle; Walter Zidek; Joachim Jankowski

Background—Uridine adenosine tetraphosphate (Up4A) was been recently characterized as a potent vasoconstrictor. Up4A occurs in plasma from healthy subjects at concentrations sufficient to cause strong vasoconstrictive effects. In this study, Up4A concentrations in plasma from juvenile hypertensives and normotensives were determined. Methods and Results—Up4A was purified to homogeneity by preparative reverse phase high performance liquid-chromatography (HPLC), affinity chromatography HPLC, and analytic reverse phase HPLC from deproteinized plasma of juvenile hypertensives and normotensives. Mean total plasma Up4A concentration was significantly increased in juvenile hypertensives compared with juvenile normotensives (33.0±25.4 versus 3.7±0.9 nmol/L; mean±SEM, n=40 and 38, respectively; P<0.005). Accordingly, Up4A showed a significant association with juvenile hypertension (OR for ln(Up4A): 1.82; 95% CI 1.12, 2.95). Plasma Up4A concentrations correlated with left ventricular mass (Kendall-&tgr; correlation coefficient 0.220, n=40; P<0.05) and intima media wall thickness (Kendall-&tgr; correlation coefficient 0.296, n=40; P<0.05) in the hypertensives. Because the increased intima media thickness may be related to proliferative effects of Up4A, we studied the effects of Up4A on human vascular smooth muscle cell proliferation. The maximum proliferative effect of Up4A was 80.0±24.0% % above control (P<0.01). The proliferative effect of Up4A on smooth muscle cells is cell cycle–dependent, involving stimulation of S phase entry. Conclusion—Circulating levels of Up4A are strongly associated with juvenile hypertension. The endothelium-derived vasoconstrictor Up4A may contribute to the early development of primary hypertension and is moreover an important risk factor of juvenile hypertension.

Collaboration


Dive into the Vera Jankowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Zidek

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge