Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vera L. Trainer is active.

Publication


Featured researches published by Vera L. Trainer.


Nature | 2000

Mortality of sea lions along the central California coast linked to a toxic diatom bloom.

Christopher A. Scholin; Frances M. D. Gulland; Gregory J. Doucette; Scott R. Benson; Mark Busman; Francisco P. Chavez; Joe Cordaro; Robert L. DeLong; Andrew De Vogelaere; James T. Harvey; Martin Haulena; Kathi A. Lefebvre; Tom Lipscomb; Susan M. Loscutoff; Linda J. Lowenstine; Roman Marin; Peter E. Miller; William A. McLellan; Peter D. R. Moeller; Christine L. Powell; Teri Rowles; Paul Silvagni; Mary W. Silver; Terry R. Spraker; Vera L. Trainer; Frances M. Van Dolah

Over 400 California sea lions (Zalophus californianus) died and many others displayed signs of neurological dysfunction along the central California coast during May and June 1998. A bloom of Pseudo-nitzschia australis (diatom) was observed in the Monterey Bay region during the same period. This bloom was associated with production of domoic acid (DA), a neurotoxin that was also detected in planktivorous fish, including the northern anchovy (Engraulis mordax), and in sea lion body fluids. These and other concurrent observations demonstrate the trophic transfer of DA resulting in marine mammal mortality. In contrast to fish, blue mussels (Mytilus edulus) collected during the DA outbreak contained no DA or only trace amounts. Such findings reveal that monitoring of mussel toxicity alone does not necessarily provide adequate warning of DA entering the food web at levels sufficient to harm marine wildlife and perhaps humans.


Nature | 2005

Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP

V. Monica Bricelj; Laurie B. Connell; Keiichi Konoki; Scott P. MacQuarrie; Todd Scheuer; William A. Catterall; Vera L. Trainer

Bivalve molluscs, the primary vectors of paralytic shellfish poisoning (PSP) in humans, show marked inter-species variation in their capacity to accumulate PSP toxins (PSTs) which has a neural basis. PSTs cause human fatalities by blocking sodium conductance in nerve fibres. Here we identify a molecular basis for inter-population variation in PSP resistance within a species, consistent with genetic adaptation to PSTs. Softshell clams (Mya arenaria) from areas exposed to ‘red tides’ are more resistant to PSTs, as demonstrated by whole-nerve assays, and accumulate toxins at greater rates than sensitive clams from unexposed areas. PSTs lead to selective mortality of sensitive clams. Resistance is caused by natural mutation of a single amino acid residue, which causes a 1,000-fold decrease in affinity at the saxitoxin-binding site in the sodium channel pore of resistant, but not sensitive, clams. Thus PSTs might act as potent natural selection agents, leading to greater toxin resistance in clam populations and increased risk of PSP in humans. Furthermore, global expansion of PSP to previously unaffected coastal areas might result in long-term changes to communities and ecosystems.


Environmental Health | 2008

Impacts of climate variability and future climate change on harmful algal blooms and human health.

Stephanie K. Moore; Vera L. Trainer; Nathan J. Mantua; Micaela S. Parker; Edward A. Laws; Lorraine C. Backer; Lora E. Fleming

Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae.


Journal of Phycology | 2012

CRYPTIC AND PSEUDO‐CRYPTIC DIVERSITY IN DIATOMS—WITH DESCRIPTIONS OF PSEUDO‐NITZSCHIA HASLEANA SP. NOV. AND P. FRYXELLIANA SP. NOV.1

Nina Lundholm; Stephen S. Bates; Keri A. Baugh; Brian D. Bill; Laurie B. Connell; Claude Léger; Vera L. Trainer

A high degree of pseudo‐cryptic diversity was reported in the well‐studied diatom genus Pseudo‐nitzschia. Studies off the coast of Washington State revealed the presence of hitherto undescribed diversity of Pseudo‐nitzschia. Forty‐one clonal strains, representing six different taxa of the P. pseudodelicatissima complex, were studied morphologically using LM and EM, and genetically using genes from three different cellular compartments: the nucleus (D1–D3 of the LSU of rDNA and internal transcribed spacers [ITSs] of rDNA), the mitochondria (cytochrome c oxidase 1), and the plastids (LSU of RUBISCO). Strains in culture at the same time were used in mating studies to study reproductive isolation of species, and selected strains were examined for the production of the neurotoxin domoic acid (DA). Two new species, P. hasleana sp. nov. and P. fryxelliana sp. nov., are described based on morphological and molecular data. In all phylogenetic analyses, P. hasleana appeared as sister taxa to a clade comprising P. calliantha and P. mannii, whereas the position of P. fryxelliana was more uncertain. In the phylogenies of ITS, P. fryxelliana appeared to be most closely related to P. cf. turgidula. Morphologically, P. hasleana differed from most other species of the complex because of a lower density of fibulae, whereas P. fryxelliana had fewer sectors in the poroids and a higher poroid density than most of the other species. P. hasleana did not produce detectable levels of DA; P. fryxelliana was unfortunately not tested. In P. cuspidata, production of DA in offspring cultures varied from higher than the parent cultures to undetectable.


Marine Drugs | 2013

Diarrhetic Shellfish Toxins and Other Lipophilic Toxins of Human Health Concern in Washington State

Vera L. Trainer; Leslie Moore; Brian D. Bill; Nicolaus G. Adams; Neil Harrington; Jerry Borchert; Denis A. M. da Silva; Bich-Thuy L. Eberhart

The illness of three people in 2011 after their ingestion of mussels collected from Sequim Bay State Park, Washington State, USA, demonstrated the need to monitor diarrhetic shellfish toxins (DSTs) in Washington State for the protection of human health. Following these cases of diarrhetic shellfish poisoning, monitoring for DSTs in Washington State became formalized in 2012, guided by routine monitoring of Dinophysis species by the SoundToxins program in Puget Sound and the Olympic Region Harmful Algal Bloom (ORHAB) partnership on the outer Washington State coast. Here we show that the DSTs at concentrations above the guidance level of 16 μg okadaic acid (OA) + dinophysistoxins (DTXs)/100 g shellfish tissue were widespread in sentinel mussels throughout Puget Sound in summer 2012 and included harvest closures of California mussel, varnish clam, manila clam and Pacific oyster. Concentrations of toxins in Pacific oyster and manila clam were often at least half those measured in blue mussels at the same site. The primary toxin isomer in shellfish and plankton samples was dinophysistoxin-1 (DTX-1) with D. acuminata as the primary Dinophysis species. Other lipophilic toxins in shellfish were pectenotoxin-2 (PTX-2) and yessotoxin (YTX) with azaspiracid-2 (AZA-2) also measured in phytoplankton samples. Okadaic acid, azaspiracid-1 (AZA-1) and azaspiracid-3 (AZA-3) were all below the levels of detection by liquid chromatography tandem mass spectrometry (LC-MS/MS). A shellfish closure at Ruby Beach, Washington, was the first ever noted on the Washington State Pacific coast due to DSTs. The greater than average Fraser River flow during the summers of 2011 and 2012 may have provided an environment conducive to dinoflagellates and played a role in the prevalence of toxigenic Dinophysis in Puget Sound.


Geophysical Research Letters | 2016

An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions

Ryan M. McCabe; Barbara M. Hickey; Raphael M. Kudela; Kathi A. Lefebvre; Nicolaus G. Adams; Brian D. Bill; Frances M. D. Gulland; Richard E. Thomson; William P. Cochlan; Vera L. Trainer

Abstract A coastwide bloom of the toxigenic diatom Pseudo‐nitzschia in spring 2015 resulted in the largest recorded outbreak of the neurotoxin, domoic acid, along the North American west coast. Elevated toxins were measured in numerous stranded marine mammals and resulted in geographically extensive and prolonged closures of razor clam, rock crab, and Dungeness crab fisheries. We demonstrate that this outbreak was initiated by anomalously warm ocean conditions. Pseudo‐nitzschia australis thrived north of its typical range in the warm, nutrient‐poor water that spanned the northeast Pacific in early 2015. The seasonal transition to upwelling provided the nutrients necessary for a large‐scale bloom; a series of spring storms delivered the bloom to the coast. Laboratory and field experiments confirming maximum growth rates with elevated temperatures and enhanced toxin production with nutrient enrichment, together with a retrospective analysis of toxic events, demonstrate the potential for similarly devastating ecological and economic disruptions in the future.


Environmental Health | 2008

Centers for Oceans and Human Health: a unified approach to the challenge of harmful algal blooms

Deana L. Erdner; Julianne Dyble; Michael L. Parsons; Richard C. Stevens; Katherine A. Hubbard; Michele L. Wrabel; Stephanie K. Moore; Kathi A. Lefebvre; Donald M. Anderson; Paul Bienfang; Robert R. Bidigare; Micaela S. Parker; Peter D. R. Moeller; Larry E. Brand; Vera L. Trainer

BackgroundHarmful algal blooms (HABs) are one focus of the national research initiatives on Oceans and Human Health (OHH) at NIEHS, NOAA and NSF. All of the OHH Centers, from the east coast to Hawaii, include one or more research projects devoted to studying HAB problems and their relationship to human health. The research shares common goals for understanding, monitoring and predicting HAB events to protect and improve human health: understanding the basic biology of the organisms; identifying how chemistry, hydrography and genetic diversity influence blooms; developing analytical methods and sensors for cells and toxins; understanding health effects of toxin exposure; and developing conceptual, empirical and numerical models of bloom dynamics.ResultsIn the past several years, there has been significant progress toward all of the common goals. Several studies have elucidated the effects of environmental conditions and genetic heterogeneity on bloom dynamics. New methods have been developed or implemented for the detection of HAB cells and toxins, including genetic assays for Pseudo-nitzschia and Microcystis, and a biosensor for domoic acid. There have been advances in predictive models of blooms, most notably for the toxic dinoflagellates Alexandrium and Karenia. Other work is focused on the future, studying the ways in which climate change may affect HAB incidence, and assessing the threat from emerging HABs and toxins, such as the cyanobacterial neurotoxin β-N-methylamino-L-alanine.ConclusionAlong the way, many challenges have been encountered that are common to the OHH Centers and also echo those of the wider HAB community. Long-term field data and basic biological information are needed to develop accurate models. Sensor development is hindered by the lack of simple and rapid assays for algal cells and especially toxins. It is also critical to adequately understand the human health effects of HAB toxins. Currently, we understand best the effects of acute toxicity, but almost nothing is known about the effects of chronic, subacute toxin exposure. The OHH initiatives have brought scientists together to work collectively on HAB issues, within and across regions. The successes that have been achieved highlight the value of collaboration and cooperation across disciplines, if we are to continue to advance our understanding of HABs and their relationship to human health.


Aquatic Toxicology | 1999

High affinity binding of red tide neurotoxins to marine mammal brain

Vera L. Trainer; Daniel G. Baden

Abstract During a period of several weeks in the spring of 1996, over 200 manatees (Trichechus manatus latirostris) were found dead or dying in coastal waters or on beaches of the Florida west coast. Concurrent with this event, high densities of Gymnodinium breve, the dinoflagellate which produces the potent neurotoxin called brevetoxin, were observed in the same coastal areas. Our study demonstrates that brevetoxin binds to isolated nerve preparations from manatee brain with similar affinity as that reported for a number of terrestrial mammals. Analysis of receptor binding of tritiated brevetoxin to manatee brain, illustrates saturable specific binding, competition of specific binding by a non-radioactive toxin of the same structure, and temperature dependence of binding. Complementary studies with the red tide neurotoxin, saxitoxin, which is responsible for the intoxication syndrome paralytic shellfish poisoning, show high affinity and specific binding of this toxin to isolated nerve preparations from several marine mammals, including manatee, gray whale (Eschrichtius robustus), humpback whale (Megaptera novaeangliae), and sea lion (Zalophus californianus). These results demonstrate the specific binding of brevetoxin and saxitoxin to excitable brain tissue of marine mammals and support the hypothesis that the exposure of manatees to brevetoxin in the spring of 1996 was a factor in their stranding and death.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas

Charles G. Trick; Brian D. Bill; William P. Cochlan; Mark L. Wells; Vera L. Trainer; Lisa D. Pickell

Oceanic high-nitrate, low-chlorophyll environments have been highlighted for potential large-scale iron fertilizations to help mitigate global climate change. Controversy surrounds these initiatives, both in the degree of carbon removal and magnitude of ecosystem impacts. Previous open ocean enrichment experiments have shown that iron additions stimulate growth of the toxigenic diatom genus Pseudonitzschia. Most Pseudonitzschia species in coastal waters produce the neurotoxin domoic acid (DA), with their blooms causing detrimental marine ecosystem impacts, but oceanic Pseudonitzschia species are considered nontoxic. Here we demonstrate that the sparse oceanic Pseudonitzschia community at the high-nitrate, low-chlorophyll Ocean Station PAPA (50° N, 145° W) produces approximately 200 pg DA L−1 in response to iron addition, that DA alters phytoplankton community structure to benefit Pseudonitzschia, and that oceanic cell isolates are toxic. Given the negative effects of DA in coastal food webs, these findings raise serious concern over the net benefit and sustainability of large-scale iron fertilizations.


Journal of Phycology | 2002

MORPHOLOGICAL, TOXICOLOGICAL, AND GENETIC DIFFERENCES AMONG PSEUDO‐NITZSCHIA (BACILLARIOPHYCEAE) SPECIES IN INLAND EMBAYMENTS AND OUTER COASTAL WATERS OF WASHINGTON STATE, USA1

Carla M. Stehr; Laurie B. Connell; Keri A. Baugh; Brian D. Bill; Nicolaus G. Adams; Vera L. Trainer

Plankton samples from three inland embayments and several outer coastal sites of Washington State were collected from 1997 through 1999 and were examined for the presence of diatoms of the genus Pseudo‐nitzschia and levels of the toxin, domoic acid (DA). Seven species were observed, including Pseudo‐nitzschia pungens (Grunow ex Cleve) Hasle, P. multiseries (Hasle) Hasle, P. australis Frenguelli, P. fraudulenta (Cleve) Hasle, P. cf. heimii Manguim, P. pseudodelicatissima (Hasle) Hasle, and P. delicatissima (Cleve) Heiden. The coastal Pseudo‐nitzschia species assemblages differed significantly from those observed within embayments. The dominant species observed at coastal sites were P. pseudodelicatissima and P. cf. heimii. Pseudo‐nitzschia assemblages found in embayments included one or more of the following species: P. pungens, P. multiseries, P. australis, P. pseudodelicatissima, and P. fraudulenta. The nuclear large subunit rRNA gene was sequenced for six of the seven species identified. This sequence revealed that P. multiseries, P. pungens, P. australis, and P. heimii were genetically similar to those found in California, whereas P. delicatissima and P. pseudodelicatissima were distinct from the California isolates. Although the concentrations of DA in razor clams along Washington State coasts have exceeded regulatory limits several times since 1991, levels of DA in shellfish from Washington State embayments have not yet exceeded regulatory limits. The widespread presence of toxin‐producing Pseudo‐nitzschia species suggests, however, that toxic blooms are likely to occur within embayments in the future. In conjunction with the monitoring of environmental conditions conducive to toxic bloom formation, the development of species‐specific probes for rapid and accurate detection of potentially toxic Pseudo‐nitzschia species in this region would enable the forecasting of a toxic event before DA accumulates in shellfish, thereby reducing the impacts to coastal communities.

Collaboration


Dive into the Vera L. Trainer's collaboration.

Top Co-Authors

Avatar

Brian D. Bill

National Marine Fisheries Service

View shared research outputs
Top Co-Authors

Avatar

Nicolaus G. Adams

National Marine Fisheries Service

View shared research outputs
Top Co-Authors

Avatar

Barbara M. Hickey

National Marine Fisheries Service

View shared research outputs
Top Co-Authors

Avatar

William P. Cochlan

San Francisco State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles G. Trick

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Bich-Thuy L. Eberhart

National Marine Fisheries Service

View shared research outputs
Top Co-Authors

Avatar

Kathi A. Lefebvre

National Marine Fisheries Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge