Verity F. Oliver
University of Auckland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Verity F. Oliver.
Fertility and Sterility | 2012
Verity F. Oliver; Harriet L. Miles; Wayne S. Cutfield; Paul Hofman; Jackie L. Ludgate; Ian M. Morison
OBJECTIVE To examine an IVF cohort for imprinted and genome-wide DNA methylation abnormalities. DESIGN Retrospective study. SETTING Research laboratory. PATIENT(S) DNA samples from a previously described IVF cohort that comprised 66 IVF-conceived prepubertal children (IVF, n = 34; intracytoplasmic sperm injection, n = 32) and 69 matched naturally conceived controls. INTERVENTION(S) DNA methylation was examined at four imprinted gene loci (H19, SNRPN, KCNQ1OT1, and IGF2) and satellite 2 using methylation-sensitive quantitative polymerase chain reaction (MSQ-PCR) followed by bisulfite sequencing at H19, SNRPN, and KCNQ1OT1. Methylated DNA immunoprecipitation (MeDIP) microarray with validation using the Sequenom MassARRAY EpiTYPER(®) platform was also used. MAIN OUTCOME MEASURE(S) Percentage of DNA methylation by MSQ-PCR, differential methylation based on microarray signal intensity, and percentage DNA methylation as determined by Sequenom MassARRAY EpiTYPER were compared. RESULT(S) No differences in percentage of methylation between the IVF and control group were observed at H19, KCNQ1OT1, SNRPN, or IGF2. Absence of aberrant imprinting was confirmed using bisulfite sequencing. Methylation of satellite 2 repeats (a surrogate for global methylation) showed no difference between the IVF and control groups. MeDIP was used to screen for differences in promoter methylation. Subsequent quantification of methylation of eight candidate genes using the Sequenom MassARRAY EpiTYPER system did not reveal any differential methylation. CONCLUSION(S) Low-level imprinting errors are not common in the IVF population.
BMC Genomics | 2015
Jun Wan; Verity F. Oliver; Guohua Wang; Heng Zhu; Donald J. Zack; Shannath L. Merbs; Jiang Qian
BackgroundDNA methylation plays an important role in regulating gene expression during many biological processes. However, the mechanism of DNA-methylation-dependent gene regulation is not fully understood. Here, we explore two possible DNA methylation regulatory mechanisms with opposite modes of gene expression regulation.ResultsBy comparing the genome-wide methylation and expression patterns in different tissues, we find that majority of tissue-specific differentially methylated regions (T-DMRs) are negatively correlated with expression of their associated genes (negative T-DMRs), consistent with the classical dogma that DNA methylation suppresses gene expression; however, a significant portion of T-DMRs are positively correlated with gene expression (positive T-DMRs). We observe that the positive T-DMRs have similar genomic location as negative T-DMRs, except that the positive T-DMRs are more enriched in the promoter regions. Both positive and negative T-DMRs are enriched in DNase I hypersensitivity sites (DHSs), suggesting that both are likely to be functional. The CpG sites of both positive and negative T-DMRs are also more evolutionarily conserved than the genomic background. Interestingly, the putative target genes of the positive T-DMR are enriched for negative regulators such as transcriptional repressors, suggesting a novel mode of indirect DNA methylation inhibition of expression through transcriptional repressors. Likewise, two distinct sets of DNA sequence motifs exist for positive and negative T-DMRs, suggesting that two distinct sets of transcription factors (TFs) are involved in positive and negative regulation mediated by DNA methylation.ConclusionsWe find both negative and positive association between T-DMRs and gene expression, which implies the existence of two different mechanisms of DNA methylation-dependent gene regulation.
Development | 2013
Igor O. Nasonkin; Shannath L. Merbs; Kevin Lazo; Verity F. Oliver; Matthew Brooks; Krushangi Patel; Raymond Enke; Jacob Nellissery; Milan Jamrich; Yun Z. Le; Kapil Bharti; Robert N. Fariss; Rivka A. Rachel; Donald J. Zack; Enrique Rodriguez-Boulan; Anand Swaroop
Dysfunction or death of photoreceptors is the primary cause of vision loss in retinal and macular degenerative diseases. As photoreceptors have an intimate relationship with the retinal pigment epithelium (RPE) for exchange of macromolecules, removal of shed membrane discs and retinoid recycling, an improved understanding of the development of the photoreceptor-RPE complex will allow better design of gene- and cell-based therapies. To explore the epigenetic contribution to retinal development we generated conditional knockout alleles of DNA methyltransferase 1 (Dnmt1) in mice. Conditional Dnmt1 knockdown in early eye development mediated by Rx-Cre did not produce lamination or cell fate defects, except in cones; however, the photoreceptors completely lacked outer segments despite near normal expression of phototransduction and cilia genes. We also identified disruption of RPE morphology and polarization as early as E15.5. Defects in outer segment biogenesis were evident with Dnmt1 exon excision only in RPE, but not when excision was directed exclusively to photoreceptors. We detected a reduction in DNA methylation of LINE1 elements (a measure of global DNA methylation) in developing mutant RPE as compared with neural retina, and of Tuba3a, which exhibited dramatically increased expression in mutant retina. These results demonstrate a unique function of DNMT1-mediated DNA methylation in controlling RPE apicobasal polarity and neural retina differentiation. We also establish a model to study the epigenetic mechanisms and signaling pathways that guide the modulation of photoreceptor outer segment morphogenesis by RPE during retinal development and disease.
Nucleic Acids Research | 2013
Jun Wan; Verity F. Oliver; Heng Zhu; Donald J. Zack; Jiang Qian; Shannath L. Merbs
The exact role of intragenic DNA methylation in regulating tissue-specific gene regulation is unclear. Recently, the DNA-binding protein CTCF has been shown to participate in the regulation of alternative splicing in a DNA methylation-dependent manner. To globally evaluate the relationship between DNA methylation and tissue-specific alternative splicing, we performed genome-wide DNA methylation profiling of mouse retina and brain. In protein-coding genes, tissue-specific differentially methylated regions (T-DMRs) were preferentially located in exons and introns. Gene ontology and evolutionary conservation analysis suggest that these T-DMRs are likely to be biologically relevant. More than 14% of alternatively spliced genes were associated with a T-DMR. T-DMR-associated genes were enriched for developmental genes, suggesting that a specific set of alternatively spliced genes may be regulated through DNA methylation. Novel DNA sequences motifs overrepresented in T-DMRs were identified as being associated with positive and/or negative regulation of alternative splicing in a position-dependent context. The majority of these evolutionarily conserved motifs contain a CpG dinucleotide. Some transcription factors, which recognize these motifs, are known to be involved in splicing. Our results suggest that DNA methylation-dependent alternative splicing is widespread and lay the foundation for further mechanistic studies of the role of DNA methylation in tissue-specific splicing regulation.
PLOS ONE | 2012
Shannath L. Merbs; Miriam A. Khan; Laszlo Hackler; Verity F. Oliver; Jun Wan; Jiang Qian; Donald J. Zack
Many studies have demonstrated that epigenetic mechanisms are important in the regulation of gene expression during embryogenesis, gametogenesis, and other forms of tissue-specific gene regulation. We sought to explore the possible role of epigenetics, specifically DNA methylation, in the establishment and maintenance of cell type-restricted gene expression in the retina. To assess the relationship between DNA methylation status and expression level of retinal genes, bisulfite sequence analysis of the 1000 bp region around the transcription start sites (TSS) of representative rod and cone photoreceptor-specific genes and gene expression analysis were performed in the WERI and Y79 human retinoblastoma cell lines. Next, the homologous genes in mouse were bisulfite sequenced in the retina and in non-expressing tissues. Finally, bisulfite sequencing was performed on isolated photoreceptor and non-photoreceptor retinal cells isolated by laser capture microdissection. Differential methylation of rhodopsin (RHO), retinal binding protein 3 (RBP3, IRBP) cone opsin, short-wave-sensitive (OPN1SW), cone opsin, middle-wave-sensitive (OPN1MW), and cone opsin, long-wave-sensitive (OPN1LW) was found in the retinoblastoma cell lines that inversely correlated with gene expression levels. Similarly, we found tissue-specific hypomethylation of the promoter region of Rho and Rbp3 in mouse retina as compared to non-expressing tissues, and also observed hypomethylation of retinal-expressed microRNAs. The Rho and Rbp3 promoter regions were unmethylated in expressing photoreceptor cells and methylated in non-expressing, non-photoreceptor cells from the inner nuclear layer. A third regional hypomethylation pattern of photoreceptor-specific genes was seen in a subpopulation of non-expressing photoreceptors (Rho in cones from the Nrl −/− mouse and Opn1sw in rods). These results demonstrate that a number of photoreceptor-specific genes have cell-specific differential DNA methylation that correlates inversely with their expression level. Furthermore, these cell-specific patterns suggest that DNA methylation may play an important role in modulating photoreceptor gene expression in the developing mammalian retina.
Cell Reports | 2013
Verity F. Oliver; Maria Franchina; Andrew E. Jaffe; Kari Branham; Mohammad Othman; John R. Heckenlively; Anand Swaroop; Betsy Campochiaro; Brendan J. Vote; Jamie E. Craig; Richard Saffery; David A. Mackey; Jiang Qian; Donald J. Zack; Alex W. Hewitt; Shannath L. Merbs
Age-related macular degeneration (AMD) is a leading cause of visual impairment worldwide. Aberrant DNA methylation within the promoter of IL17RC in peripheral blood mononuclear cells has recently been reported in AMD. To validate this association, we examined DNA methylation of the IL17RC promoter in peripheral blood. First, we used Illumina Human Methylation450 Bead Arrays, a widely accepted platform for measuring global DNA methylation. Second, methylation status at multiple sites within the IL17RC promoter was determined by bisulfite pyrosequencing in two cohorts. Third, a methylation-sensitive quantitative PCR-based assay was performed on a subset of samples. In contrast to previous findings, we did not find evidence of differential methylation between AMD cases and age-matched controls. We conclude that hypomethylation within the IL17RC gene promoter in peripheral blood is not suitable for use as a clinical biomarker of AMD. This study highlights the need for considerable replication of epigenetic association studies prior to clinical application.
Epigenetics & Chromatin | 2013
Verity F. Oliver; Jun Wan; Saurabh Agarwal; Donald J. Zack; Jiang Qian; Shannath L. Merbs
BackgroundGrowing evidence suggests that DNA methylation plays a role in tissue-specific differentiation. Current approaches to methylome analysis using enrichment with the methyl-binding domain protein (MBD) are restricted to large (≥1 μg) DNA samples, limiting the analysis of small tissue samples. Here we present a technique that enables characterization of genome-wide tissue-specific methylation patterns from nanogram quantities of DNA.ResultsWe have developed a methodology utilizing MBD2b/MBD3L1 enrichment for methylated DNA, kinase pre-treated ligation-mediated PCR amplification (MeKL) and hybridization to the comprehensive high-throughput array for relative methylation (CHARM) customized tiling arrays, which we termed MeKL-chip. Kinase modification in combination with the addition of PEG has increased ligation-mediated PCR amplification over 20-fold, enabling >400-fold amplification of starting DNA. We have shown that MeKL-chip can be applied to as little as 20 ng of DNA, enabling comprehensive analysis of small DNA samples. Applying MeKL-chip to the mouse retina (a limited tissue source) and brain, 2,498 tissue-specific differentially methylated regions (T-DMRs) were characterized. The top five T-DMRs (Rgs20, Hes2, Nfic, Cckbr and Six3os1) were validated by pyrosequencing.ConclusionsMeKL-chip enables genome-wide methylation analysis of nanogram quantities of DNA with a wide range of observed-to-expected CpG ratios due to the binding properties of the MBD2b/MBD3L1 protein complex. This methodology enabled the first analysis of genome-wide methylation in the mouse retina, characterizing novel T-DMRs.
Methods of Molecular Biology | 2012
Laszlo Hackler; Tomohiro Masuda; Verity F. Oliver; Shannath L. Merbs; Donald J. Zack
Laser capture microdissection (LCM) is a useful method to isolate specific cells or cell layers of interest from heterogeneous tissues, such as the retina. The collected cells can be used for DNA, RNA, or protein analysis. We have applied LCM technology to isolate cells from the outer nuclear, inner nuclear, and ganglion cell layers of the retina for mRNA and microRNA (miRNA) expression and epigenetic (DNA methylation) analysis. Here, we describe the methods we have employed for sample preparation, LCM-based isolation of retinal layers, RNA/DNA extraction, RNA quality check, microRNA analysis by quantitative PCR, and DNA methylation analysis by bisulfite sequencing.
Epigenetics | 2015
Verity F. Oliver; Andrew E. Jaffe; Jin Song; Guohua Wang; Pingwu Zhang; Kari Branham; Anand Swaroop; Charles G. Eberhart; Donald J. Zack; Jiang Qian; Shannath L. Merbs
Age-related macular degeneration (AMD) is a major cause of blindness in the western world. While genetic studies have linked both common and rare variants in genes involved in regulation of the complement system to increased risk of development of AMD, environmental factors, such as smoking and nutrition, can also significantly affect the risk of developing the disease and the rate of disease progression. Since epigenetics has been implicated in mediating, in part, the disease risk associated with some environmental factors, we investigated a possible epigenetic contribution to AMD. We performed genome-wide DNA methylation profiling of blood from AMD patients and controls. No differential methylation site reached genome-wide significance; however, when epigenetic changes in and around known GWAS-defined AMD risk loci were explored, we found small but significant DNA methylation differences in the blood of neovascular AMD patients near age-related maculopathy susceptibility 2 (ARMS2), a top-ranked GWAS locus preferentially associated with neovascular AMD. The methylation level of one of the CpG sites significantly correlated with the genotype of the risk SNP rs10490924, suggesting a possible epigenetic mechanism of risk. Integrating genome-wide DNA methylation analysis of retina samples with and without AMD together with blood samples, we further identified a consistent, replicable change in DNA methylation in the promoter region of protease serine 50 (PRSS50). These methylation changes may identify sites in novel genes that are susceptible to non-genetic factors known to contribute to AMD development and progression.
Ophthalmology | 2016
Verity F. Oliver; Katherine van Bysterveldt; Murray Cadzow; Bernhard Steger; Vito Romano; David Markie; Alex W. Hewitt; David A. Mackey; Colin E. Willoughby; Trevor Sherwin; Philip S. Crosier; Charles Nj McGhee; Andrea L. Vincent
PURPOSE Corneal dystrophies are a genetically heterogeneous group of disorders. We previously described a family with an autosomal dominant epithelial recurrent erosion dystrophy (ERED). We aimed to identify the underlying genetic cause of ERED in this family and 3 additional ERED families. We sought to characterize the potential function of the candidate genes using the human and zebrafish cornea. DESIGN Case series study of 4 white families with a similar ERED. An experimental study was performed on human and zebrafish tissue to examine the putative biological function of candidate genes. PARTICIPANTS Four ERED families, including 28 affected and 17 unaffected individuals. METHODS HumanLinkage-12 arrays (Illumina, San Diego, CA) were used to genotype 17 family members. Next-generation exome sequencing was performed on an uncle-niece pair. Segregation of potential causative mutations was confirmed using Sanger sequencing. Protein expression was determined using immunohistochemistry in human and zebrafish cornea. Gene expression in zebrafish was assessed using whole-mount in situ hybridization. Morpholino-induced transient gene knockdown was performed in zebrafish embryos. MAIN OUTCOME MEASURES Linkage microarray, exome analysis, DNA sequence analysis, immunohistochemistry, in situ hybridization, and morpholino-induced genetic knockdown results. RESULTS Linkage microarray analysis identified a candidate region on chromosome chr10:12,576,562-112,763,135, and exploration of exome sequencing data identified 8 putative pathogenic variants in this linkage region. Two variants segregated in 06NZ-TRB1 with ERED: COL17A1 c.3156C→T and DNAJC9 c.334G→A. The COL17A1 c.3156C→T variant segregated in all 4 ERED families. We showed biologically relevant expression of these proteins in human cornea. Both proteins are expressed in the cornea of zebrafish embryos and adults. Zebrafish lacking Col17a1a and Dnajc9 during development show no gross corneal phenotype. CONCLUSIONS The COL17A1 c.3156C→T variant is the likely causative mutation in our recurrent corneal erosion families, and its presence in 4 independent families suggests that it is prevalent in ERED. This same COL17A1 c.3156C→T variant recently was identified in a separate pedigree with ERED. Our study expands the phenotypic spectrum of COL17A1 disease from autosomal recessive epidermolysis bullosa to autosomal dominant ERED and identifies COL17A1 as a key protein in maintaining integrity of the corneal epithelium.