Vernon French
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vernon French.
Evolution | 1994
Linda Partridge; Brian Barrie; Kevin Fowler; Vernon French
We examined the evolutionary and developmental responses of body size to temperature in Drosophila melanogaster, using replicated lines of flies that had been allowed to evolve for 5 yr at 25°C or at 16.5°C. Development and evolution at the lower temperature both resulted in higher thorax length and wing area. The evolutionary effect of temperature on wing area was entirely a consequence of an increase in cell area. The developmental response was mainly attributable to an increase in cell area, with a small effect on cell number in males. Given its similarity to the evolutionary response, the increase in body size and cell size resulting from development at low temperature may be a case of adaptive phenotypic plasticity. The pattern of plasticity did not evolve in response to temperature for any of the traits. The selective advantage of the evolutionary and developmental responses to temperature is obscure and remains a major challenge for future work.
Current Biology | 2001
Craig R. Brunetti; Jayne Selegue; Antónia Monteiro; Vernon French; Paul M. Brakefield; Sean B. Carroll
BACKGROUND A fundamental challenge of evolutionary and developmental biology is understanding how new characters arise and change. The recently derived eyespots on butterfly wings vary extensively in number and pattern between species and play important roles in predator avoidance. Eyespots form through the activity of inductive organizers (foci) at the center of developing eyespot fields. Foci are the proposed source of a morphogen, the levels of which determine the color of surrounding wing scale cells. However, it is unknown how reception of the focal signal translates into rings of different-colored scales, nor how different color schemes arise in different species. RESULTS We have identified several transcription factors, including butterfly homologs of the Drosophila Engrailed/Invected and Spalt proteins, that are deployed in concentric territories corresponding to the future rings of pigmented scales that compose the adult eyespot. We have isolated a new Bicyclus anynana wing pattern mutant, Goldeneye, in which the scales of one inner color ring become the color of a different ring. These changes correlate with shifts in transcription factor expression, suggesting that Goldeneye affects an early regulatory step in eyespot color patterning. In different butterfly species, the same transcription factors are expressed in eyespot fields, but in different relative spatial domains that correlate with divergent eyespot color schemes. CONCLUSIONS Our results suggest that signaling from the focus induces nested rings of regulatory gene expression that subsequently control the final color pattern. Furthermore, the remarkably plastic regulatory interactions downstream of focal signaling have facilitated the evolution of eyespot diversity.
Evolution | 1996
Ricardo B. R. Azevedo; Vernon French; Linda Partridge
We measured the size of eggs produced by populations of Drosophila melanogaster that had been collected along latitudinal gradients in different continents or that had undergone several years of culture at different temperatures in the laboratory. Australian and South American populations from higher latitudes produced larger eggs when all were compared at a standard temperature. Laboratory populations that had been evolving at 16.5°C produced larger eggs than populations that had evolved at 25°C or 29°C, suggesting that temperature may be an important selective agent in producing the latitudinal clines. Flies from laboratory populations produced larger eggs at an experimental temperature of 16.5°C than at 25°C, and there was no indication of genotype‐environment interaction for egg size. Evolution of egg size in response to temperature cannot be accounted for by differences in adult body size between populations. It is not clear which life‐history traits are direct targets of thermal selection and which are showing correlated responses, and disentangling these is a task for the future.
The American Naturalist | 1997
Ricardo B. R. Azevedo; Vernon French; Linda Partridge
We used a novel approach to study the effects of egg size on offspring fitness components in Drosophila melanogaster. Populations that differed genetically in egg size were crossed, and the female offspring from these reciprocal crosses were examined for life‐history traits. These flies expressed effects of egg size, because they developed from eggs of different sizes as a result of maternal genetic effects, but displayed an equivalent range of nuclear genetic variation. The crosses used four independent pairs of outbred populations that differed in the pattern of covariation between egg size and life‐history traits, so that the maternal genetic effects of egg size on offspring characters could be contrasted to the associations present among the parental populations. Egg size showed positive maternal genetic effects on embryonic viability and development rate, hatchling weight and feeding rate, and egg‐larva and egg‐adult development rate but no consistent effects on larval competitive ability, adult weight, or egg size in the offspring. Our method revealed a pattern of causality that could not be deduced from interpopulation comparisons and therefore provides a good way of disentangling the causes and consequences of variation in egg size while controlling for zygotic genetic effects.
Evolution | 1995
Linda Partridge; Brian Barrie; Nicholas H. Barton; Kevin Fowler; Vernon French
Three replicate lines of Drosophila melanogaster were cultured at each of two temperatures (16.5°C and 25°C) in population cages for 4 yr. The lifespans of both sexes and the fecundity and fertility of the females were then measured at both experimental temperatures. The characters showed evidence of adaptation; flies of both sexes from each selection regime showed higher longevity, and females showed higher fecundity and fertility, than flies from the other selection regime when they were tested at the experimental temperature at which they had evolved. Calculation of intrinsic rates of increase under different assumptions about the rate of population increase showed that the difference between the lines from the two selection regimes became less the higher the rate of population increase, because the lines were more similar in early adulthood than they were later. Despite the increased adaptation of the low‐temperature lines to the low temperature, like the high temperature lines they produced progeny at a higher rate at the higher temperature. The lines may have independently evolved adaptations to their respective thermal regimes during the experiment, or there may have been a trade‐off between adaptation to the two temperatures, or mutation pressure may have lowered adaptation to the temperature that the flies no longer encountered.
Journal of Insect Physiology | 1998
Vernon French; Marieke Feast; Linda Partridge
In Drosophila, like most ectotherms, development at low temperature reduces growth rate but increases final adult size. Cultures were shifted from 25 degrees C to low (16.5 degrees C) or to high (29 degrees C) temperature at regular intervals through larval and pupal stages, and the flies of both sexes showed an increase or decrease, respectively, in the size of thorax, wing and abdominal tergite. Size changes in the wing blade resulted from changes in the size of the epidermal cells (with only a small increase in cell number in males reared at low temperature). The temperature-shifts became less effective as they were made at successively later developmental stages, demonstrating a cumulative effect of temperature on adult size. The thorax and wing develop from the same imaginal disc, with most cell division occurring in larval stages, but they differ in timing of temperature sensitivity, which extends only to pupariation or into the late pupal stage, respectively. Growth of the adult abdomen occurs largely after pupariation but its size is temperature-sensitive through both larval and pupal stages. We discuss growth control in Drosophila and the likely effects of temperature on food assimilation, growth efficiency and allocation of nutrients to the production of different tissues.
Evolution | 1994
Antónia Monteiro; Paul M. Brakefield; Vernon French
We have studied interactions between developmental processes and genetic variation for the eyespot color pattern on the adult dorsal forewing of the nymphalid butterfly, Bicyclus anynana. Truncation selection was applied in both an upward and a downward direction to the size of a single eyespot consisting of rings with wing scales of differing color pigments. High heritabilities resulted in rapid responses to selection yielding divergent lines with very large or very small eyespots. Strong correlated responses occurred in most of the other eyespots on each wing surface. The cells at the center of a presumptive eyespot (the “focus”) act in the early pupal stage to establish the adult wing pattern. The developmental fate of the scale cells within an eyespot is specified by the “signaling” properties of the focus and the “response” thresholds of the epidermis. The individual eyespots can be envisaged as developmental homologues. Grafting experiments performed with the eyespot foci of the selected lines showed that additive genetic variance exists for both the response and, in particular, the signaling components of the developmental system. The results are discussed in the context of how constraints on the evolution of this wing pattern may be related to the developmental organization.
Journal of Insect Physiology | 2002
Ricardo B. R. Azevedo; Vernon French; Linda Partridge
Most ectotherms show increased body size at maturity when reared under colder temperatures. In principle, temperature could produce this outcome by influencing growth, proliferation and/or death of epidermal cells. Here we investigated the effects of rearing temperature on the cell size and cell number in the wing blade, the basitarsus of the leg and the cornea of the eye of Drosophila melanogaster from two populations at opposite ends of a South American latitudinal cline. We found that, in both strains of D. melanogaster and in both sexes, a decrease in rearing temperature increases the size of the wings, legs and eyes through an effect on epidermal cell size, with no significant change in cell number. Our results indicate that temperature has a consistent effect on cell size in the Drosophila epidermis and this may also apply to other cell types. In contrast, the evolutionary effects of temperature on the different organs are not consistent. We discuss our findings in the context of growth control in Drosophila.
BioEssays | 1999
Paul M. Brakefield; Vernon French
The diversity in colour patterns on butterfly wings provides great potential for understanding how developmental mechanisms may be modulated in the evolution of adaptive traits. In particular, we discuss concentric eyespot patterns, which have been shown by surgical experiments to be formed in response to signals from a central focus. Seasonal polyphenism shows how alternate phenotypes can develop through environmental sensitivity mediated by ecdysteroid hormones, whereas artificial selection and single gene mutants demonstrate genetic variation influencing the number, shape, size, position, and colour composition of the eyespots. The expression patterns of the regulatory gene Distal‐less reveal that these changes can arise at several different developmental stages, and the phenotypes indicate that some forms of changed pattern may occur much more readily than others. Further study of the genes, of the developmental mechanisms, and of the functions of the patterns will provide novel insights about the evolution of morphological diversity. BioEssays 21:391–401, 1999.
Journal of Evolutionary Biology | 1994
Linda Partridge; Brian Barrie; Kevin Fowler; Vernon French
Replicated lines of Drosophila melanogaster were allowed to evolve in population cage culture at 16.5° C or 25° C for five years. Their larval and pupal development times, larval growth rates, larval critical weights for pupariation and pre‐adult survival rates were then measured at both temperatures. Pre‐adult survival showed evidence of adaptation of the lines to their thermal selection regimes, with each set of lines showing superior survival when tested at the temperature at which they had been evolving. Pupal periods were similar for all lines when growing at 16.5° C but, at 25° C, the low temperature lines had the longer pupal periods. Irrespective of experimental temperature, low temperature lines grew faster and had shorter larval development periods than the high temperature lines. Larval critical weights for pupariation were higher in the low temperature lines at the low experimental temperature, and higher in the high temperature lines at the higher experimental temperature. The correlations between these traits induced by thermal evolution were in general different from or opposite to the genetic correlations found within a single temperature.