Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Verónica Cerpa is active.

Publication


Featured researches published by Verónica Cerpa.


The Journal of Neuroscience | 2008

Prenatal to Early Postnatal Nicotine Exposure Impairs Central Chemoreception and Modifies Breathing Pattern in Mouse Neonates: A Probable Link to Sudden Infant Death Syndrome

Jaime Eugenín; Marcelo Otárola; Eduardo Bravo; Claudio Coddou; Verónica Cerpa; Miguel Reyes-Parada; Isabel Llona; Rommy von Bernhardi

Nicotine is a neuroteratogen and is the likely link between maternal cigarette smoking during pregnancy and sudden infant death syndrome (SIDS). Osmotic minipumps were implanted in 5–7 d CF1 pregnant mice to deliver nicotine bitartrate (60 mg Kg−1 day−1) or saline (control) solutions for up to 28 d. Prenatal to early postnatal nicotine exposure did not modify the number of newborns per litter or their postnatal growth; however, nicotine-exposed neonates hypoventilated and had reduced responses to hypercarbia (inhalation of air enriched with 10% CO2 for 20 min) and hypoxia (inhalation of 100% N2 for 20 s) at postnatal days 0–3 (P0–P3). In contrast, at postnatal day 8, nicotine-exposed neonates were indistinguishable from controls. Isolated brainstem–spinal cord preparations obtained from P0 to P3 nicotine-exposed neonates showed fictive respiration with respiratory cycles longer and more irregular than those of controls, as indicated by high short- and long-term variability in Poincaré plots. In addition, their responses to acidification were reduced, indicating compromise of central chemoreception. Furthermore, the cholinergic contribution to central chemosensory responses switched from muscarinic receptor to nicotinic receptor-based mechanisms. No significant astrogliosis was detectable in the ventral respiratory group of neurons with glial fibrillary acidic protein immunohistochemistry. These results indicate that nicotine exposure affects the respiratory rhythm pattern generator and causes a decline in central chemoreception during early postnatal life. Consequently, breathing would become highly vulnerable, failing to respond to chemosensory demands. Such impairment could be related to the ventilatory abnormalities observed in SIDS.


Neuroscience Letters | 2000

Adenosine triphosphate-induced peripheral nerve discharges generated from the cat petrosal ganglion in vitro

Julio Alcayaga; Verónica Cerpa; Mauricio A. Retamal; Jorge Arroyo; Rodrigo Iturriaga; P. Zapata

Since nucleotides have been postulated as transmitters between glomus cells and chemosensory nerve endings in the carotid body, we studied the effects of their application to the petrosal ganglion, where the perikarya of carotid (sinus) nerve are located. Cat petrosal ganglia were superfused in vitro, while electrical activities of their peripheral processes (carotid nerve and glossopharyngeal branch) were recorded simultaneously. Adenosine triphosphate (ATP) evoked dose-dependent bursts of impulses in carotid nerve, while those in glossopharyngeal branch were less intense and consistent. Adenosine monophosphate was less effective than ATP. ATP-induced carotid nerve responses presented no temporal desensitization and persisted after applying P(2Y) receptor blocker Reactive Blue 2 to the ganglion. The results indicate that ATP has an excitatory effect on the perikarya of the population of petrosal ganglion neurons projecting peripherally through the carotid nerve.


American Journal of Respiratory Cell and Molecular Biology | 2015

The Alteration of Neonatal Raphe Neurons by Prenatal–Perinatal Nicotine. Meaning for Sudden Infant Death Syndrome

Verónica Cerpa; María de la Luz Aylwin; Sebastián Beltrán-Castillo; Eduardo Bravo; Isabel Llona; George B. Richerson; Jaime Eugenín

Nicotine may link maternal cigarette smoking with respiratory dysfunctions in sudden infant death syndrome (SIDS). Prenatal-perinatal nicotine exposure blunts ventilatory responses to hypercapnia and reduces central respiratory chemoreception in mouse neonates at Postnatal Days 0 (P0) to P3. This suggests that raphe neurons, which are altered in SIDS and contribute to central respiratory chemoreception, may be affected by nicotine. We therefore investigated whether prenatal-perinatal nicotine exposure affects the activity, electrical properties, and chemosensitivity of raphe obscurus (ROb) neurons in mouse neonates. Osmotic minipumps, implanted subcutaneously in 5- to 7-day-pregnant CF1 mice, delivered nicotine bitartrate (60 mg kg(-1) d(-1)) or saline (control) for up to 28 days. In neonates, ventilation was recorded by head-out plethysmography, c-Fos (neuronal activity marker), or serotonin autoreceptors (5HT1AR) were immunodetected using light microscopy, and patch-clamp recordings were made from raphe neurons in brainstem slices under normocarbia and hypercarbia. Prenatal-perinatal nicotine exposure decreased the hypercarbia-induced ventilatory responses at P1-P5, reduced both the number of c-Fos-positive ROb neurons during eucapnic normoxia at P1-P3 and their hypercapnia-induced recruitment at P3, increased 5HT1AR immunolabeling of ROb neurons at P3-P5, and reduced the spontaneous firing frequency of ROb neurons at P3 without affecting their CO2 sensitivity or their passive and active electrical properties. These findings reveal that prenatal-perinatal nicotine reduces the activity of neonatal ROb neurons, likely as a consequence of increased expression of 5HT1ARs. This hypoactivity may change the functional state of the respiratory neural network leading to breathing vulnerability and chemosensory failure as seen in SIDS.


Neuroscience | 2014

Diphtheria toxin treatment of Pet-1-Cre floxed diphtheria toxin receptor mice disrupts thermoregulation without affecting respiratory chemoreception

Verónica Cerpa; Amalia Gonzalez; George B. Richerson

In genetically-modified Lmx1b(f/f/p) mice, selective deletion of LMX1B in Pet-1 expressing cells leads to failure of embryonic development of serotonin (5-HT) neurons. As adults, these mice have a decreased hypercapnic ventilatory response and abnormal thermoregulation. This mouse model has been valuable in defining the normal role of 5-HT neurons, but it is possible that developmental compensation reduces the severity of observed deficits. Here we studied mice genetically modified to express diphtheria toxin receptors (DTR) on Pet-1 expressing neurons (Pet-1-Cre/floxed DTR or Pet1/DTR mice). These mice developed with a normal complement of 5-HT neurons. As adults, systemic treatment with 2-35μg of diphtheria toxin (DT) reduced the number of tryptophan hydroxylase-immunoreactive (TpOH-ir) neurons in the raphe nuclei and ventrolateral medulla by 80%. There were no effects of DT on minute ventilation (VE) or the ventilatory response to hypercapnia or hypoxia. At an ambient temperature (TA) of 24°C, all Pet1/DTR mice dropped their body temperature (TB) below 35°C after DT treatment, but the latency was shorter in males than females (3.0±0.37 vs. 4.57±0.29days, respectively; p<0.001). One week after DT treatment, mice were challenged by dropping TA from 37°C to 24°C, which caused TB to decrease more in males than in females (29.7±0.31°C vs. 33.0±1.3°C, p<0.01). We conclude that the 20% of 5-HT neurons that remain after DT treatment in Pet1/DTR mice are sufficient to maintain normal baseline breathing and a normal response to CO2, while those affected include some essential for thermoregulation, in males more than females. In comparison to models with deficient embryonic development of 5-HT neurons, acute deletion of 5-HT neurons in adults leads to a greater defect in thermoregulation, suggesting that significant developmental compensation can occur.


Frontiers in Cellular Neuroscience | 2014

Cxs and Panx- hemichannels in peripheral and central chemosensing in mammals.

Edison P. Reyes; Verónica Cerpa; Liliana Corvalán; Mauricio A. Retamal

Connexins (Cxs) and Pannexins (Panx) form hemichannels at the plasma membrane of animals. Despite their low open probability under physiological conditions, these hemichannels release signaling molecules (i.e., ATP, Glutamate, PGE2) to the extracellular space, thus subserving several important physiological processes. Oxygen and CO2 sensing are fundamental to the normal functioning of vertebrate organisms. Fluctuations in blood PO2, PCO2 and pH are sensed at the carotid bifurcations of adult mammals by glomus cells of the carotid bodies. Likewise, changes in pH and/or PCO2 of cerebrospinal fluid are sensed by central chemoreceptors, a group of specialized neurones distributed in the ventrolateral medulla (VLM), raphe nuclei, and some other brainstem areas. After many years of research, the molecular mechanisms involved in chemosensing process are not completely understood. This manuscript will review data regarding relationships between chemosensitive cells and the expression of channels formed by Cxs and Panx, with special emphasis on hemichannels.


Neuroscience | 2017

Medullary 5-HT neurons: Switch from tonic respiratory drive to chemoreception during postnatal development.

Verónica Cerpa; Yuanming Wu; Eduardo Bravo; Frida A. Teran; Rachel S. Flynn; George B. Richerson

Serotonin (5-HT) neurons contribute to respiratory chemoreception in adult mice, but it is unclear whether they play a similar role in neonatal mice. We studied breathing during development in Lmx1bf/f/p mice, which lack 5-HT neurons. From postnatal days 1-7 (P1-P7), ventilation of Lmx1bf/f/p mice breathing room air was 50% of WT mice (p<0.001). By P12, baseline ventilation increased to a level equal to WT mice. In contrast, the hypercapnic ventilatory response (HCVR) of neonatal Lmx1bf/f/p and WT mice was equal to each other, but were both much less than adult WT mice. By P21 the HCVR of WT mice increased to near adult levels, but the HCVR of Lmx1bf/f/p mice had not changed, and was 42% less than WT mice. Primary cell cultures were prepared from the ventromedial medulla of neonatal mice, and patch-clamp recordings were made from neurons identified as serotonergic by expression of a reporter gene. In parallel with developmental changes of the HCVR in vivo, 5-HT neurons had little chemosensitivity to acidosis until 12days in vitro (DIV), after which their response increased to reach a plateau around 25 DIV. Neonatal Lmx1bf/f/p mice displayed high mortality and decreased growth rate, and this worsened in hypoxia. Mortality was decreased in hyperoxia. These results indicate that maturation of 5-HT neurons contributes to development of respiratory CO2/pH chemoreception during the first few weeks of life in mice in vivo. A defect in the 5-HT system in early postnatal life decreases survival due in part to hypoxia.


Respiratory Research | 2001

Ionic currents and action potential induced by electrical stimulation, ACh and ATP in petrosal ganglion neurons

Rodrigo Varas; Rodrigo Iturriaga; Carmen Alcayaga; Verónica Cerpa; Julio Alcayaga

The glossopharyngeal nerve contains the sensory fibers of the petrosal ganglion (PG) neurons that innervate the carotid body and sinus, through the carotid sinus nerve, and the tongue and the pharynx, through the glossopharyngeal branch. Based on the shape of the action potential, two populations of PG neurons can be recognized. However, little is known about the ionic currents underlying these action potentials. The application of ACh and ATP, transmitters putatively involved in the communication between the glomus cells and PG neuron terminals, to the isolated PG increase the frequency of discharge of the carotid sinus nerve, while only ATP increases discharges in the glossopharyngeal branch. The above suggests the presence of at least two neuronal populations. Petrosal ganglia were excised from cats anesthetized with sodium pentobarbitone (40 mg/kg, ip), dissociated, and the neurons cultured for 3–16 days. Using whole-cell patch-clamp technique, we recorded from isolated PG neurons both action potentials and ionic currents evoked by electrical stimulation, and by application of ACh and ATP. Neurons presented either fast action potentials (F-type) or slower spikes with an inflexion in the repolarizing phase (H-type). The F-type neurons had fast inward and a sustained outward current. The spike and inward currents were reversibly blocked when choline replaced Na+ or in the presence of 3 μM tetrodotoxin (TTX). The outward current was partly blocked by 5 mM tetraethylammonium (TEA). The H-type neurons presented an inward current with at least two components, and an outward current with a fast -partly inactivating- and a slower sustained component. When external Na+ was replaced by choline, or when 3 μM TTX was added, the amplitude of the spike and the inward current were reversibly decreased. Similarly, when intracellular K+ was replaced by Cs+, or when 5 mM TEA was added, the amplitude and duration of the spike increased and the outward current was reduced. Under voltage-clamp, ATP induced a dose-dependent inward current that was partly desensitized during 20 s application pulses. The ATP-induced current had a threshold of 100 nM, and saturated between 20–50 μM. ACh also induced a fast, inactivating inward current, with a threshold between 10–50 μM, and saturated about 1–5 mM. From 34 neurons tested for ACh and ATP, 9% responded only to ACh, 24% to ATP only, 50% responded to both agents, and the remaining 17% were unresponsive. In current-clamp, ATP and ACh depolarized the neurons and may induce action potentials. Our results show that H- and F-type PG neurons express different voltage-gated ionic and receptor-gated currents, which are activated either by ACh or ATP, with a half population responding to both putative transmitters.


Brain Research | 2003

Dopamine inhibits ATP-induced responses in the cat petrosal ganglion in vitro

Julio Alcayaga; Mauricio A. Retamal; Verónica Cerpa; Jorge Arroyo; P. Zapata


Brain Research | 2007

ATP- and ACh-induced responses in isolated cat petrosal ganglion neurons

Carmen Alcayaga; Rodrigo Varas; Viviana Valdés; Verónica Cerpa; Jorge Arroyo; Rodrigo Iturriaga; Julio Alcayaga


Brain Research | 2003

Catecholamine release from isolated sensory neurons of cat petrosal ganglia in tissue culture

Rodrigo Iturriaga; Verónica Cerpa; P. Zapata; Julio Alcayaga

Collaboration


Dive into the Verónica Cerpa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Zapata

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Rodrigo Iturriaga

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodrigo Varas

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Edison P. Reyes

Universidad del Desarrollo

View shared research outputs
Top Co-Authors

Avatar

Liliana Corvalán

Universidad del Desarrollo

View shared research outputs
Researchain Logo
Decentralizing Knowledge