Verónica Eisner
Thomas Jefferson University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Verónica Eisner.
Journal of Cell Science | 2013
Verónica Eisner; György Csordás; György Hajnóczky
Summary Mitochondria are strategically and dynamically positioned in the cell to spatially coordinate ATP production with energy needs and to allow the local exchange of material with other organelles. Interactions of mitochondria with the sarco-endoplasmic reticulum (SR/ER) have been receiving much attention owing to emerging evidence on the role these sites have in cell signaling, dynamics and biosynthetic pathways. One of the most important physiological and pathophysiological paradigms for SR/ER–mitochondria interactions is in cardiac and skeletal muscle. The contractile activity of these tissues has to be matched by mitochondrial ATP generation that is achieved, at least in part, by propagation of Ca2+ signals from SR to mitochondria. However, the muscle has a highly ordered structure, providing only limited opportunity for mitochondrial dynamics and interorganellar interactions. This Commentary focuses on the latest advances in the structure, function and disease relevance of the communication between SR/ER and mitochondria in muscle. In particular, we discuss the recent demonstration of SR/ER–mitochondria tethers that are formed by multiple proteins, and local Ca2+ transfer between SR/ER and mitochondria.
Journal of Cell Biology | 2014
Verónica Eisner; Guy Lenaers; György Hajnóczky
Mitochondrial fusion is frequent in skeletal muscle, and its disruption jeopardizes excitation–contraction coupling and may contribute to the pathology of myopathies.
Molecular Cell | 2014
David Weaver; Verónica Eisner; Xingguo Liu; Péter Várnai; László Hunyady; Atan Gross; György Hajnóczky
Cells deficient in mitochondrial fusion have been shown to have defects linked to the exchange of inner membrane and matrix components. Because outer-mitochondrial membrane (OMM) constituents insert directly from the cytoplasm, a role for fusion in their intermitochondrial transfer was unanticipated. Here, we show that fibroblasts lacking the GTPases responsible for OMM fusion, mitofusins 1 and 2 (MFN1 and MFN2), display more heterogeneous distribution of OMM proteins. Proteins with different modes of OMM association display varying degrees of heterogeneity in Mfn1/2(-/-) cells and different kinetics of transfer during fusion in fusion-competent cells. Proapoptotic Bak exhibits marked heterogeneity, which is normalized upon expression of MFN2. Bak is critical for Bid-induced OMM permeabilization and cytochrome c release, and Mfn1/2(-/-) cells show dysregulation of Bid-dependent apoptotic signaling. Bid sensitivity of Bak-deficient mitochondria is regained upon fusion with Bak-containing mitochondria. Thus, OMM protein distribution depends on mitochondrial fusion and is a locus of apoptotic dysfunction in conditions of fusion deficiency.
Journal of Medical Genetics | 2016
Ronen Spiegel; Ann Saada; Padraig James Flannery; Florence Burté; Devorah Soiferman; Morad Khayat; Verónica Eisner; Eugene Vladovski; Robert W. Taylor; Laurence A. Bindoff; Avraham Shaag; Hanna Mandel; Ora Schuler-Furman; Stavit A. Shalev; Orly Elpeleg; Patrick Yu-Wai-Man
Background Infantile-onset encephalopathy and hypertrophic cardiomyopathy caused by mitochondrial oxidative phosphorylation defects are genetically heterogeneous with defects involving both the mitochondrial and nuclear genomes. Objective To identify the causative genetic defect in two sisters presenting with lethal infantile encephalopathy, hypertrophic cardiomyopathy and optic atrophy. Methods We describe a comprehensive clinical, biochemical and molecular genetic investigation of two affected siblings from a consanguineous family. Molecular genetic analysis was done by a combined approach involving genome-wide autozygosity mapping and next-generation exome sequencing. Biochemical analysis was done by enzymatic analysis and Western blot. Evidence for mitochondrial DNA (mtDNA) instability was investigated using long-range and real-time PCR assays. Mitochondrial cristae morphology was assessed with transmission electron microscopy. Results Both affected sisters presented with a similar cluster of neurodevelopmental deficits marked by failure to thrive, generalised neuromuscular weakness and optic atrophy. The disease progression was ultimately fatal with severe encephalopathy and hypertrophic cardiomyopathy. Mitochondrial respiratory chain complex activities were globally decreased in skeletal muscle biopsies. They were found to be homozygous for a novel c.1601T>G (p.Leu534Arg) mutation in the OPA1 gene, which resulted in a marked loss of steady-state levels of the native OPA1 protein. We observed severe mtDNA depletion in DNA extracted from the patients’ muscle biopsies. Mitochondrial morphology was consistent with abnormal mitochondrial membrane fusion. Conclusions We have established, for the first time, a causal link between a pathogenic homozygous OPA1 mutation and human disease. The fatal multisystemic manifestations observed further extend the complex phenotype associated with pathogenic OPA1 mutations, in particular the previously unreported association with hypertrophic cardiomyopathy. Our findings further emphasise the vital role played by OPA1 in mitochondrial biogenesis and mtDNA maintenance.
Cell Calcium | 2012
Muqing Yi; David Weaver; Verónica Eisner; Péter Várnai; László Hunyady; Jianjie Ma; György Csordás; György Hajnóczky
Emerging evidence indicates that mitochondria are locally coupled to endoplasmic reticulum (ER) Ca2+ release in myoblasts and to sarcoplasmic reticulum (SR) Ca2+ release in differentiated muscle fibers in order to regulate cytoplasmic calcium dynamics and match metabolism with cell activity. However, the mechanism of the developmental transition from ER to SR coupling remains unclear. We have studied mitochondrial sensing of IP3 receptor (IP3R)- and ryanodine receptor (RyR)-mediated Ca2+ signals in H9c2 myoblasts and differentiating myotubes, as well as the attendant changes in mitochondrial morphology. Mitochondria in myoblasts were largely elongated, luminally connected and relatively few in number, whereas the myotubes were densely packed with globular mitochondria that displayed limited luminal continuity. Vasopressin, an IP3-linked agonist, evoked a large cytoplasmic Ca2+ ([Ca2+]c) increase in myoblasts, whereas it elicited a smaller response in myotubes. Conversely, RyR-mediated Ca2+ release induced by caffeine, was not observed in myoblasts, but triggered a large [Ca2+]c signal in myotubes. Both the IP3R and the RyR-mediated [Ca2+]c rise was closely associated with a mitochondrial matrix Ca2+ ([Ca2+]m) signal. Every myotube that showed a [Ca2+]c spike also displayed a [Ca2+]m response. Addition of IP3 to permeabilized myoblasts and caffeine to permeabilized myotubes also resulted in a rapid [Ca2+]m rise, indicating that Ca2+ was delivered via local coupling of the ER/SR and mitochondria. Thus, as RyRs are expressed during muscle differentiation, the local connection between RyR and mitochondrial Ca2+ uptake sites also appears. When RyR1 was exogenously introduced to myoblasts by overexpression, the [Ca2+]m signal appeared together with the [Ca2+]c signal, however the mitochondrial morphology remained unchanged. Thus, RyR expression alone is sufficient to induce the steps essential for their alignment with mitochondrial Ca2+ uptake sites, whereas the mitochondrial proliferation and reshaping utilize either downstream or alternative pathways.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Verónica Eisner; Ryan R. Cupo; Erhe Gao; György Csordás; William S. Slovinsky; Lan Cheng; Jessica Ibetti; S. R. Wayne Chen; J. Kurt Chuprun; Jan B. Hoek; Walter J. Koch; György Hajnóczky
Significance Mitochondrial function is supported by dynamic quality control processes, such as mitochondrial fusion. Cardiac contractility depends on mitochondrial metabolism, yet in cardiomyocytes, mitochondria are confined among myofibrils, raising questions about the possibility of mitochondrial physical communication. Here we demonstrate that mitochondrial continuity is robust and fusion is frequent in freshly isolated rat ventricular myocytes, manifesting both as rapid content mixing events between adjacent organelles and slower, often long-distance events. We show that mitochondrial fusion decreases dramatically in culture because of the decay in contractile activity and, more specifically, the underlying calcium oscillations, which involve mitofusin 1 (Mfn1) abundance. In addition, we show that attenuation of cardiac contractility in vivo in alcoholic animals is also associated with depressed mitochondrial fusion. Mitochondrial fusion is thought to be important for supporting cardiac contractility, but is hardly detectable in cultured cardiomyocytes and is difficult to directly evaluate in the heart. We overcame this obstacle through in vivo adenoviral transduction with matrix-targeted photoactivatable GFP and confocal microscopy. Imaging in whole rat hearts indicated mitochondrial network formation and fusion activity in ventricular cardiomyocytes. Promptly after isolation, cardiomyocytes showed extensive mitochondrial connectivity and fusion, which decayed in culture (at 24–48 h). Fusion manifested both as rapid content mixing events between adjacent organelles and slower events between both neighboring and distant mitochondria. Loss of fusion in culture likely results from the decline in calcium oscillations/contractile activity and mitofusin 1 (Mfn1), because (i) verapamil suppressed both contraction and mitochondrial fusion, (ii) after spontaneous contraction or short-term field stimulation fusion activity increased in cardiomyocytes, and (iii) ryanodine receptor-2–mediated calcium oscillations increased fusion activity in HEK293 cells and complementing changes occurred in Mfn1. Weakened cardiac contractility in vivo in alcoholic animals is also associated with depressed mitochondrial fusion. Thus, attenuated mitochondrial fusion might contribute to the pathogenesis of cardiomyopathy.
Human Molecular Genetics | 2018
Marina Bartsakoulia; Angela Pyle; Diego Troncoso-Chandía; Josefa Vial-Brizzi; Marysol Paz-Fiblas; Jennifer Duff; Helen Griffin; Veronika Boczonadi; Hanns Lochmüller; Stephanie Kleinle; Patrick F. Chinnery; Sarah Catharina Grünert; Janbernd Kirschner; Verónica Eisner; Rita Horvath
Abstract Mitochondrial dynamics play an important role in cellular homeostasis and a variety of human diseases are linked to its dysregulated function. Here, we describe a 15-year-old boy with a novel disease caused by altered mitochondrial dynamics. The patient was the second child of consanguineous Jewish parents. He developed progressive muscle weakness and exercise intolerance at 6 years of age. His muscle biopsy revealed mitochondrial myopathy with numerous ragged red and cytochrome c oxidase (COX) negative fibers and combined respiratory chain complex I and IV deficiency. MtDNA copy number was elevated and no deletions of the mtDNA were detected in muscle DNA. Whole exome sequencing identified a homozygous nonsense mutation (p.Q92*) in the MIEF2 gene encoding the mitochondrial dynamics protein of 49 kDa (MID49). Immunoblotting revealed increased levels of proteins promoting mitochondrial fusion (MFN2, OPA1) and decreased levels of the fission protein DRP1. Fibroblasts of the patient showed elongated mitochondria, and significantly higher frequency of fusion events, mtDNA abundance and aberrant mitochondrial cristae ultrastructure, compared with controls. Thus, our data suggest that mutations in MIEF2 result in imbalanced mitochondrial dynamics and a combined respiratory chain enzyme defect in skeletal muscle, leading to mitochondrial myopathy.
Nature Cell Biology | 2018
Verónica Eisner; Martin Picard; György Hajnóczky
Mitochondria sense and respond to many stressors and can support cell survival or death through energy production and signalling pathways. Mitochondrial responses depend on fusion–fission dynamics that dilute and segregate damaged mitochondria. Mitochondrial motility and inter-organellar interactions, such as with the endoplasmic reticulum, also function in cellular adaptation to stress. In this Review, we discuss how stressors influence these components, and how they contribute to the complex adaptive and pathological responses that lead to disease.
Biophysical Journal | 2017
Verónica Eisner; Diego Troncoso; Pamela Rojas; Josefa Vial; Mauricio Castro; Sergio Henríquez; Rita Horvath
Biophysical Journal | 2015
Verónica Eisner; Ryan R. Cupo; Erhe Gao; György Csordás; Lan Cheng; Jessica Ibetti; J. Kurt Chuprun; Walter J. Koch; György Hajnóczky