Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Veronica Estrada is active.

Publication


Featured researches published by Veronica Estrada.


Brain | 2012

Significant clinical, neuropathological and behavioural recovery from acute spinal cord trauma by transplantation of a well-defined somatic stem cell from human umbilical cord blood.

Jessica Schira; Marcia Gasis; Veronica Estrada; Marion Hendricks; Christine Schmitz; Thorsten Trapp; Fabian Kruse; Gesine Kögler; Peter Wernet; Hans-Peter Hartung; Hans Werner Müller

Stem cell therapy is a potential treatment for spinal cord injury and different stem cell types have been grafted into animal models and humans suffering from spinal trauma. Due to inconsistent results, it is still an important and clinically relevant question which stem cell type will prove to be therapeutically effective. Thus far, stem cells of human sources grafted into spinal cord mostly included barely defined heterogeneous mesenchymal stem cell populations derived from bone marrow or umbilical cord blood. Here, we have transplanted a well-defined unrestricted somatic stem cell isolated from human umbilical cord blood into an acute traumatic spinal cord injury of adult immune suppressed rat. Grafting of unrestricted somatic stem cells into the vicinity of a dorsal hemisection injury at thoracic level eight resulted in hepatocyte growth factor-directed migration and accumulation within the lesion area, reduction in lesion size and augmented tissue sparing, enhanced axon regrowth and significant functional locomotor improvement as revealed by three behavioural tasks (open field Basso-Beattie-Bresnahan locomotor score, horizontal ladder walking test and CatWalk gait analysis). To accomplish the beneficial effects, neither neural differentiation nor long-lasting persistence of the grafted human stem cells appears to be required. The secretion of neurite outgrowth-promoting factors in vitro further suggests a paracrine function of unrestricted somatic stem cells in spinal cord injury. Given the highly supportive functional characteristics in spinal cord injury, production in virtually unlimited quantities at GMP grade and lack of ethical concerns, unrestricted somatic stem cells appear to be a highly suitable human stem cell source for clinical application in central nervous system injuries.


Molecular and Cellular Neuroscience | 2009

SDF-1 stimulates neurite growth on inhibitory CNS myelin

Jessica Opatz; Patrick Küry; Nora Schiwy; Anne Järve; Veronica Estrada; Nicole Brazda; Frank Bosse; Hans Werner Müller

Impaired axonal regeneration is a common observation after central nervous system (CNS) injury. The stromal cell-derived factor-1, SDF-1/CXCL12, has previously been shown to promote axonal growth in the presence of potent chemorepellent molecules known to be important in nervous system development. Here, we report that treatment with SDF-1alpha is sufficient to overcome neurite outgrowth inhibition mediated by CNS myelin towards cultured postnatal dorsal root ganglion neurons. While we found both cognate SDF-1 receptors, CXCR4 and CXCR7/RDC1, to be coexpressed on myelin-sensitive dorsal root ganglion neurons, the distinct expression pattern of CXCR4 on growth cones and branching points of neurites suggests a function of this receptor in chemokine-mediated growth promotion and/or arborization. These in vitro findings were further corroborated as local intrathecal infusion of SDF-1 into spinal cord injury following thoracic dorsal hemisection resulted in enhanced sprouting of corticospinal tract axons into white and grey matter. Our findings indicate that SDF-1 receptor activation might constitute a novel therapeutic approach to promote axonal growth in the injured CNS.


Neurobiology of Disease | 2014

Long-lasting significant functional improvement in chronic severe spinal cord injury following scar resection and polyethylene glycol implantation

Veronica Estrada; Nicole Brazda; Christine Schmitz; Silja Heller; Heinrich Blazyca; Rudolf Martini; Hans Werner Müller

We identified a suitable biomatrix that improved axon regeneration and functional outcome after partial (moderate) and complete (severe) chronic spinal cord injury (SCI) in rat. Five weeks after dorsal thoracic hemisection injury the lesion scar was resected via aspiration and the resulting cavity was filled with different biopolymers such as Matrigel™, alginate-hydrogel and polyethylene glycol 600 (PEG) all of which have not previously been used as sole graft-materials in chronic SCI. Immunohistological staining revealed marked differences between these compounds regarding axon regeneration, invasion/elongation of astrocytes, fibroblasts, endothelial and Schwann cells, revascularization, and collagen deposition. According to axon regeneration-supporting effects, the biopolymers could be ranked in the order PEG>>alginate-hydrogel>Matrigel™. Even after complete chronic transection, the PEG-bridge allowed long-distance axon regeneration through the grafted area and for, at least, 1cm beyond the lesion/graft border. As revealed by electron microscopy, bundles of regenerating axons within the matrix area received myelin ensheathment from Schwann cells. The beneficial effects of PEG-implantation into the resection-cavity were accompanied by long-lasting significant locomotor improvement over a period of 8months. Following complete spinal re-transection at the rostral border of the PEG-graft the locomotor recovery was aborted, suggesting a functional role of regenerated axons in the initial locomotor improvement. In conclusion, scar resection and subsequent implantation of PEG into the generated cavity leads to tissue recovery, axon regeneration, myelination and functional improvement that have not been achieved before in severe chronic SCI.


F1000 Medicine Reports | 2014

Spinal cord injury - there is not just one way of treating it.

Veronica Estrada; Hans Werner Müller

In the last century, research in the field of spinal cord trauma has brought insightful knowledge which has led to a detailed understanding of mechanisms that are involved in injury- and recovery-related processes. The quest for a cure for the yet generally incurable condition as well as the exponential rise in gained information has brought about the development of numerous treatment approaches while at the same time the abundance of data has become quite unmanageable. Owing to an enormous amount of preclinical therapeutic approaches, this report highlights important trends rather than specific treatment strategies. We focus on current advances in the treatment of spinal cord injury and want to further draw attention to arising problems in spinal cord injury (SCI) research and discuss possible solutions.


PLOS ONE | 2015

Pharmacological Suppression of CNS Scarring by Deferoxamine Reduces Lesion Volume and Increases Regeneration in an In Vitro Model for Astroglial-Fibrotic Scarring and in Rat Spinal Cord Injury In Vivo

Christina F. Vogelaar; Brigitte König; Stefanie Krafft; Veronica Estrada; Nicole Brazda; Brigida Ziegler; Andreas Faissner; Hans Werner Müller

Lesion-induced scarring is a major impediment for regeneration of injured axons in the central nervous system (CNS). The collagen-rich glial-fibrous scar contains numerous axon growth inhibitory factors forming a regeneration-barrier for axons. We demonstrated previously that the combination of the iron chelator 2,2’-bipyridine-5,5’-decarboxylic acid (BPY-DCA) and 8-Br-cyclic AMP (cAMP) inhibits scar formation and collagen deposition, leading to enhanced axon regeneration and partial functional recovery after spinal cord injury. While BPY-DCA is not a clinical drug, the clinically approved iron chelator deferoxamine mesylate (DFO) may be a suitable alternative for anti-scarring treatment (AST). In order to prove the scar-suppressing efficacy of DFO we modified a recently published in vitro model for CNS scarring. The model comprises a co-culture system of cerebral astrocytes and meningeal fibroblasts, which form scar-like clusters when stimulated with transforming growth factor-β (TGF-β). We studied the mechanisms of TGF-β-induced CNS scarring and compared the efficiency of different putative pharmacological scar-reducing treatments, including BPY-DCA, DFO and cAMP as well as combinations thereof. We observed modulation of TGF-β-induced scarring at the level of fibroblast proliferation and contraction as well as specific changes in the expression of extracellular matrix molecules and axon growth inhibitory proteins. The individual and combinatorial pharmacological treatments had distinct effects on the cellular and molecular aspects of in vitro scarring. DFO could be identified as a putative anti-scarring treatment for CNS trauma. We subsequently validated this by local application of DFO to a dorsal hemisection in the rat thoracic spinal cord. DFO treatment led to significant reduction of scarring, slightly increased regeneration of corticospinal tract as well as ascending CGRP-positive axons and moderately improved locomotion. We conclude that the in vitro model for CNS scarring is suitable for efficient pre-screening and identification of putative scar-suppressing agents prior to in vivo application and validation, thus saving costs, time and laboratory animals.


Progress in Brain Research | 2014

Neural ECM mimetics

Veronica Estrada; Ayse B. Tekinay; Hans Werner Müller

The consequence of numerous neurological disorders is the significant loss of neural cells, which further results in multilevel dysfunction or severe functional deficits. The extracellular matrix (ECM) is of tremendous importance for neural regeneration mediating ambivalent functions: ECM serves as a growth-promoting substrate for neurons but, on the other hand, is a major constituent of the inhibitory scar, which results from traumatic injuries of the central nervous system. Therefore, cell and tissue replacement strategies on the basis of ECM mimetics are very promising therapeutic interventions. Numerous synthetic and natural materials have proven effective both in vitro and in vivo. The closer a materials physicochemical and molecular properties are to the original extracellular matrix, the more promising its effectiveness may be. Relevant factors that need to be taken into account when designing such materials for neural repair relate to receptor-mediated cell-matrix interactions, which are dependent on chemical and mechanical sensing. This chapter outlines important characteristics of natural and synthetic ECM materials (scaffolds) and provides an overview of recent advances in design and application of ECM materials for neural regeneration, both in therapeutic applications and in basic biological research.


Biomaterials | 2013

A mechanical microconnector system for restoration of tissue continuity and long-term drug application into the injured spinal cord

Nicole Brazda; Christian Voss; Veronica Estrada; Homaira Lodin; Nils Weinrich; Klaus Seide; Jörg Müller; Hans Werner Müller

Complete transection of the spinal cord leaves a gap of several mm which fills with fibrous scar tissue. Several approaches in rodent models have used tubes, foams, matrices or tissue implants to bridge this gap. Here, we describe a mechanical microconnector system (mMS) to re-adjust the retracted spinal cord stumps. The mMS is a multi-channel system of polymethylmethacrylate (PMMA), designed to fit into the spinal cord tissue gap after transection, with an outlet tubing system to apply negative pressure to the mMS thus sucking the spinal cord stumps into the honeycomb-structured holes. The stumps adhere to the microstructure of the mMS walls and remain in the mMS after removal of the vacuum. We show that the mMS preserves tissue integrity and allows axonal regrowth at 2, 5 and 19 weeks post lesion with no adverse tissue effects like in-bleeding or cyst formation. Preliminary assessment of locomotor function in the open field suggested beneficial effects of the mMS. Additional inner micro-channels enable local substance delivery into the lesion center via an attached osmotic minipump. We suggest that the mMS is a suitable device to adapt and stabilize the injured spinal cord after surgical resection of scar tissue (e.g., for chronic patients) or traumatic injuries with large tissue and bone damages.


Archive | 2016

Experimental Spinal Cord Injury Models in Rodents: Anatomical Correlations and Assessment of Motor Recovery

Christina F. Vogelaar; Veronica Estrada

Human traumatic spinal cord injury (SCI) causes disruption of descending motor and ascending sensory tracts, which leads to severe disturbances in motor functions. To date, no standard therapy for the regeneration of severed spinal cord axons in humans exists. Experimental SCI in rodents is essential for the development of new treatment strat‐ egies and for understanding the underlying mechanisms leading to motor recovery. Here, we provide an overview of the main rodent models and techniques available for the investigation of neuronal regeneration and motor recovery after experimental SCI.


Behavioural Brain Research | 2016

HSF1-deficiency affects gait coordination and cerebellar calbindin levels.

Marc Ingenwerth; Veronica Estrada; Anna Stahr; Hans Werner Müller; Charlotte von Gall

Heat shock proteins (HSPs) play an important role in cell homeostasis and protect against cell damage. They were previously identified as key players in different ataxia models. HSF1 is the main transcription factor for HSP activation. HSF1-deficient mice (HSF1-/-) are known to have deficiencies in motor control test. However, little is known about effects of HSF1-deficiency on locomotor, especially gait, coordination. Therefore, we compared HSF-deficient (HSF1-/-) mice and wildtype littermates using an automated gait analysis system for objective assessment of gait coordination. We found significant changes in gait parameters of HSF1-/- mice reminiscent of cerebellar ataxia. Immunohistochemical analyses of a cerebellum revealed co-localization of HSF1 and calbindin in Purkinje cells. Therefore, we tested the hypothesis of a potential interconnection between HSF1 and calbindin in Purkinje cells. Calbindin levels were analyzed qualitatively and quantitatively by immunohistochemistry and immunoblotting, respectively. While quantitative PCR revealed no differences in calbindin mRNA levels between HSF1+/+ and HSF1-/- mice, calbindin protein levels, however, were significantly decreased in a cerebellum of HSF1-/- mice. A pathway analysis supports the hypothesis of an interconnection between HSF1 and calbindin. In summary, the targeted deletion of HSF1 results in changes of locomotor function associated with changes in cerebellar calbindin protein levels. These findings suggest a role of HSF1 in regular Purkinje cell calcium homeostasis.


Proceedings of the 3rd Joint Ontology Workshops (JOWO): Ontologies and Data in the Life Sciences | 2017

SCIO: An Ontology to Support the Formalization of Pre-Clinical Spinal Cord Injury Experiments.

Nicole Brazda; Hendrik ter Horst; Matthias Hartung; Cord Wiljes; Veronica Estrada; Roman Klinger; Wolfgang Kuchinke; Hans Werner Müller; Philipp Cimiano

Collaboration


Dive into the Veronica Estrada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole Brazda

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge