Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Veronica Gatto is active.

Publication


Featured researches published by Veronica Gatto.


Journal of Food Protection | 2008

Rapid detection and quantification of tyrosine decarboxylase gene (tdc) and its expression in gram-positive bacteria associated with fermented foods using PCR-based methods.

Sandra Torriani; Veronica Gatto; Silvia Sembeni; Rosanna Tofalo; Giovanna Suzzi; Nicoletta Belletti; Fausto Gardini; Sara Bover-Cid

In this study, PCR-based procedures were developed to detect the occurrence and quantify the expression of the tyrosine decarboxylase gene (tdc) in gram-positive bacteria associated with fermented foods. Consensus primers were used in conventional and reverse transcription PCR to analyze a collection of 87 pure cultures of lactic acid bacteria and staphylococci. All enterococci, Staphylococcus epidermidis, Lactobacillus brevis, Lactobacillus curvatus, and Lactobacillus fermentum strains and 1 of 10 Staphylococcus xylosus strains produced amplification products with the primers DEC5 and DEC3 in accordance with results of the screening plate method and with previously reported result obtained with high-performance liquid chromatography. No amplicons were obtained for tyramine-negative strains, confirming the high specificity of these new primers. A novel quantitative real-time PCR assay was successfully applied to quantify tdc and its transcript in pure cultures and in meat and meat products. This assay allowed estimation of the influence of different variables (pH, temperature, and NaCl concentration) on the tdc expression of the tyraminogenic strain Enterococcus faecalis EF37 after 72 h of growth in M17 medium. Data obtained suggest that stressful conditions could induce greater tyrosine decarboxylase activity. The culture-independent PCR procedures developed here may be used for reliable and fast detection and quantification of bacterial tyraminogenic activity without the limitations of conventional techniques.


Applied and Environmental Microbiology | 2008

Modeling the Aminogenic Potential of Enterococcus faecalis EF37 in Dry Fermented Sausages through Chemical and Molecular Approaches

Fausto Gardini; Sara Bover-Cid; Rosanna Tofalo; Nicoletta Belletti; Veronica Gatto; Giovanna Suzzi; Sandra Torriani

ABSTRACT Amino acid decarboxylase activity of the Enterococcus faecalis strain EF37 was monitored during fermentation and ripening of a traditional dry fermented sausage from Northern Italy (Salame Veronese) by means of microbiological, chemical, and molecular approaches in relation to three technological factors: fermentation temperature, sodium chloride concentration, and amount of glucose added to the meat mixture. Besides the analytical determination of tyramine and phenylethylamine accumulation and the counts of enterococci, the presence and quantification of the tyrosine decarboxylase gene (tdc) and its mRNA transcript were also investigated by using real-time PCR. According to the mathematical models obtained, all of the three factors studied were statistically significant and microbiologically relevant for the early development of enterococci, although the fermentation temperature had a more relevant influence on the enterococcal viable cells of the ripened product. Sodium chloride concentration was the most determinant factor of the final tyramine and 2-phenylethylamine accumulation and also of the levels of tdc present in the final product. In contrast, an effect of glucose concentration on tdc expression was observed in the last period of ripening. Moreover, increasing amounts of sodium chloride and decreasing fermentation temperature resulted in a reduced tdc expression. This is the first time that bacterial tyrosine decarboxylase potential is directly examined through a molecular approach in a fermented meat. The quantification of tdc and its transcript can help to elucidate the critical steps and factors during food manufacturing at which bacterial aminogenesis is possible, thus allowing researchers to propose technological measures to control decarboxylase activities.


International Journal of Food Microbiology | 2014

Control of tyramine and histamine accumulation by lactic acid bacteria using bacteriocin forming lactococci.

Giulia Tabanelli; Chiara Montanari; Eleonora Bargossi; Rosalba Lanciotti; Veronica Gatto; Giovanna E. Felis; Sandra Torriani; Fausto Gardini

The aim of this study was to evaluate the competitive effects of three bacteriocin producing strains of Lactococcus lactis subsp. lactis against two aminobiogenic lactic acid bacteria, i.e. the tyramine producing strain Enterococcus faecalis EF37 and the histamine producing strain Streptococcus thermophilus PRI60, inoculated at different initial concentrations (from 2 to 6 log cfu/ml). The results showed that the three L. lactis subsp. lactis strains were able to produce bacteriocins: in particular, L. lactis subsp. lactis VR84 and EG46 produced, respectively, nisin Z and lacticin 481, while for the strains CG27 the bacteriocin has not been yet identified, even if its peptidic nature has been demonstrated. The co-culture of E. faecalis EF37 in combination with lactococci significantly reduced the growth potential of this aminobiogenic strain, both in terms of growth rate and maximum cell concentration, depending on the initial inoculum level of E. faecalis. Tyramine accumulation was strongly reduced when E. faecalis EF37 was inoculated at 2 log cfu/ml and, to a lesser extent, at 3 log cfu/ml, as a result of a lower cell load of the aminobiogenic strain. All the lactococci were more efficient in inhibiting streptococci in comparison with E. faecalis EF37; in particular, L. lactis subsp. lactis VR84 induced the death of S. thermophilus PRI60 and allowed the detection of histamine traces only at higher streptococci inoculum levels (5-6 log cfu/ml). The other two lactococcal strains did not show a lethal action against S. thermophilus PRI60, but were able to reduce its growth extent and histamine accumulation, even if L. lactis subsp. lactis EG46 was less effective when the initial streptococci concentration was 5 and 6 log cfu/ml. This preliminary study has clarified some aspects regarding the ratio between bacteriocinogenic strains and aminobiogenic strains with respect to the possibility to accumulate BA and has also showed that different bacteriocins can have different effects on BA production on the same strain. This knowledge is essentially aimed to use bacteriocinogenic lactococci as a predictable strategy against aminobiogenic bacteria present in cheese or other fermented foods.


Journal of Applied Microbiology | 2009

Relationships between microbial population dynamics and putrescine and cadaverine accumulation during dry fermented sausage ripening

Sara Bover-Cid; Sandra Torriani; Veronica Gatto; Rosanna Tofalo; Giovanna Suzzi; Nicoletta Belletti; Fausto Gardini

Aims:  To evaluate the concomitant effects of three technological variables (fermentation temperature, NaCl and glucose added to the meat batter) on diamines (cadaverine, putrescine and histamine) accumulation and microbial changes during ripening of dry fermented sausages.


Frontiers in Microbiology | 2015

Tyrosine decarboxylase activity of enterococci grown in media with different nutritional potential: tyramine and 2-phenylethylamine accumulation and tyrDC gene expression

Eleonora Bargossi; Giulia Tabanelli; Chiara Montanari; Rosalba Lanciotti; Veronica Gatto; Fausto Gardini; Sandra Torriani

The ability to accumulate tyramine and 2-phenylethylamine by two strains of Enterococcus faecalis and two strains Enterococcus faecium was evaluated in two cultural media added or not with tyrosine. All the enterococcal strains possessed a tyrosine decarboxylase (tyrDC) which determined tyramine accumulation in all the conditions tested, independently on the addition of high concentration of free tyrosine. Enterococci differed in rate and level of biogenic amines accumulation. E. faecalis EF37 and E. faecium FC12 produced tyramine in high amount since the exponential growth phase, while 2-phenylethylamine was accumulated when tyrosine was depleted. E. faecium FC12 and E. faecalis ATCC 29212 showed a slower tyraminogenic activity which took place mainly in the stationary phase up to 72 h of incubation. Moreover, E. faecalis ATCC 29212 produced 2-phenylethylamine only in the media without tyrosine added. In BHI added or not with tyrosine the tyrDC gene expression level differed considerably depending on the strains and the growth phase. In particular, the tyrDC gene expression was high during the exponential phase in rich medium for all the strains and subsequently decreased except for E. faecium FC12. Even if tyrDC presence is common among enterococci, this study underlines the extremely variable decarboxylating potential of strains belonging to the same species, suggesting strain-dependent implications in food safety.


Frontiers in Microbiology | 2015

The Capability of Tyramine Production and Correlation between Phenotypic and Genetic Characteristics of Enterococcus faecium and Enterococcus faecalis Strains

Eleonora Bargossi; Fausto Gardini; Veronica Gatto; Chiara Montanari; Sandra Torriani; Giulia Tabanelli

The aim of this study was to investigate the diversity of tyramine production capability of four Enterococcus strains in buffered systems in relation to their genetic characteristics and environmental conditions. Cells of the strains Enterococcus faecalis EF37 and ATCC 29212, and E. faecium FC12 and FC643 were re-suspended in phosphate/citrate buffers with different pH, NaCl concentration and incubation temperature. At intervals, cell viability and tyramine production were assessed by plate counting and HPLC analysis, respectively. The activity of a purified tyrosine decarboxylase (TDC) was determined under the same conditions, as a reference. Reduced loss in cell viability was observed in all the tested conditions, except for pH 4 after 24 h. The TDC activity was greatly heterogeneous within the enterococci: EF37 and FC12 produced the higher tyramine concentrations, ATCC 29212 showed a reduced decarboxylase activity, while EF643 did not accumulate detectable amounts of tyramine in all the conditions assayed. Among the considerate variables, temperature was the most influencing factor on tyramine accumulation for enterococcal cells. To further correlate the phenotypic and genetic characteristics of the enterococci, the TDC operon region carrying the genes tyrosine decarboxylase (tyrDC), tyrosine/tyramine permease (tyrP), and Na+/H+ antiporter (nhaC-2) was amplified and sequenced. The genetic organization and nucleotide sequence of this operon region were highly conserved in the enterococcal strains of the same species. The heterogeneity in tyramine production found between the two E. faecalis strains could be ascribed to different regulation mechanisms not yet elucidated. On the contrary, a codon stop was identified in the translated tyrDC sequence of E. faecium FC643, supporting its inability to accumulate tyramine in the tested conditions. In addition, the presence of an additional putative tyrosine decarboxylase with different substrate specificity and genetic organization was noticed for the first time. Concluding, the high TDC activity heterogeneity within enterococci determined different accumulation of tyramine, depending on different genetic determinants, regulation mechanisms, and environmental factors. The present research contributes to elucidate the genetic characteristics of enterococcal strains and correlate specific mutations to their different strain-dependent tyraminogenic activity.


Journal of Applied Microbiology | 2017

Growth, biogenic amine production and tyrDC transcription of Enterococcus faecalis in synthetic medium containing defined amino acid concentrations

Eleonora Bargossi; Giulia Tabanelli; Chiara Montanari; Veronica Gatto; Fabio Chinnici; Fausto Gardini; Sandra Torriani

The tyraminogenic potential of the strains Enterococcus faecalis EF37 and ATCC 29212 was investigated in a synthetic medium containing defined amounts of tyrosine and phenylalanine at different temperatures.


Microbial Biotechnology | 2016

Tyrosine decarboxylase activity of Enterococcus mundtii: new insights into phenotypic and genetic aspects

Veronica Gatto; Giulia Tabanelli; Chiara Montanari; Valentina Prodomi; Eleonora Bargossi; Sandra Torriani; Fausto Gardini

Few information is available about the tyraminogenic potential of the species Enterococcus mundtii. In this study, two plant‐derived strains of E. mundtii were selected and investigated to better understand the phenotypic behaviour and the genetic mechanisms involved in tyramine accumulation. Both the strains accumulated tyramine from the beginning of exponential phase of growth, independently on the addition of tyrosine to the medium. The strains accumulated also 2‐phenylethylamine, although with lower efficiency and in greater extent when tyrosine was not added. Accordingly, the tyrosine decarboxylase (tyrDC) gene expression level increased during the exponential phase with tyrosine added, while it remained constant and high without precursor. The genetic organization as well as sequence identity levels of tyrDC and tyrosine permease (tyrP) genes indicated a correlation with those of phylogenetically closer enterococcal species, such as E. faecium, E. hirae and E. durans; however, the gene Na+/H+ antiporter (nhaC) that usually follow tyrP is missing. In addition, BLAST analysis revealed the presence of additional genes encoding for decarboxylase and permease in the genome of several E. mundtii strains. It is speculated the occurrence of a duplication event and the acquisition of different specificity for these enzymes that deserves further investigations.


Genome Announcements | 2016

Draft Genome Sequence of the Probiotic Yeast Kluyveromyces marxianus fragilis B0399.

Sara Quarella; Simone Scalabrin; Ilenia Campedelli; Ana Backovic; Veronica Gatto; Federica Cattonaro; Alessandro Turello; Sandra Torriani; Giovanna E. Felis

ABSTRACT Here, we report the draft genome sequence of Kluyveromyces marxianus fragilis B0399, the first yeast approved as a probiotic for human consumption not belonging to the genus Saccharomyces. The genome is composed of 8 chromosomes, with a total size of 11.44 Mb, including mitochondrial DNA.


Current Microbiology | 2006

A Genetic Insight Into Peptide and Amino-Acid Utilization by Propionibacterium freudenreichii LMG 16415

Franca Rossi; Veronica Gatto; Marta Marzotto; Sandra Torriani

In this note the genetic characterization of the peptide degrading system of Propionibacterium freudenreichii was addressed. Genomic fragments of P. freudenreichii subsp. freudenreichii LMG 16415 were cloned in Escherichia coli XL1 Blue, and those leading to an increase in peptidase-like activity using chromogenic substrates aminoacyl-β-naphtylamides (aminoacyl-βNA) were isolated and sequenced. This strategy allowed the identification of partial gene regions of P. freudenreichii LMG 16415 with significant similarity to proteins directly or indirectly involved in peptide and amino acid metabolism, i.e., an oligopeptide transporter, a D-amino acid oxidase, a muropeptidase, and an ABC transporter involved in osmoregulation similar to glycine betaine transporters.

Collaboration


Dive into the Veronica Gatto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge