Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Veronica Ramirez is active.

Publication


Featured researches published by Veronica Ramirez.


Circulation Research | 2015

Embryonic Stem Cell-Derived Exosomes Promote Endogenous Repair Mechanisms and Enhance Cardiac Function Following Myocardial Infarction

Mohsin Khan; Emily Nickoloff; Tatiana Abramova; Jennifer Johnson; Suresh K Verma; Prasanna Krishnamurthy; Alexander R. Mackie; Erin E Vaughan; Venkata Naga Srikanth Garikipati; Cynthia Benedict; Veronica Ramirez; Erin Lambers; Aiko Ito; Erhe Gao; Sol Misener; Timothy S. Luongo; John W. Elrod; Gangjian Qin; Steven R. Houser; Walter J. Koch; Raj Kishore

RATIONALE Embryonic stem cells (ESCs) hold great promise for cardiac regeneration but are susceptible to various concerns. Recently, salutary effects of stem cells have been connected to exosome secretion. ESCs have the ability to produce exosomes, however, their effect in the context of the heart is unknown. OBJECTIVE Determine the effect of ESC-derived exosome for the repair of ischemic myocardium and whether c-kit(+) cardiac progenitor cells (CPCs) function can be enhanced with ESC exosomes. METHODS AND RESULTS This study demonstrates that mouse ESC-derived exosomes (mES Ex) possess ability to augment function in infarcted hearts. mES Ex enhanced neovascularization, cardiomyocyte survival, and reduced fibrosis post infarction consistent with resurgence of cardiac proliferative response. Importantly, mES Ex augmented CPC survival, proliferation, and cardiac commitment concurrent with increased c-kit(+) CPCs in vivo 8 weeks after in vivo transfer along with formation of bonafide new cardiomyocytes in the ischemic heart. miRNA array revealed significant enrichment of miR290-295 cluster and particularly miR-294 in ESC exosomes. The underlying basis for the beneficial effect of mES Ex was tied to delivery of ESC specific miR-294 to CPCs promoting increased survival, cell cycle progression, and proliferation. CONCLUSIONS mES Ex provide a novel cell-free system that uses the immense regenerative power of ES cells while avoiding the risks associated with direct ES or ES-derived cell transplantation and risk of teratomas. ESC exosomes possess cardiac regeneration ability and modulate both cardiomyocyte and CPC-based repair programs in the heart.


Kidney International | 2016

Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production

Valentin David; Aline Martin; Tamara Isakova; Christina Spaulding; Lixin Qi; Veronica Ramirez; Kimberly B. Zumbrennen-Bullough; Chia Chi Sun; Herbert Y. Lin; Myles Wolf

Circulating levels of fibroblast growth factor 23 (FGF23) are elevated in patients with chronic kidney disease (CKD), but the mechanisms are poorly understood. Here we tested whether inflammation and iron deficiency regulate FGF23. In wild-type mice, acute inflammation induced by single injections of heat-killed Brucella abortus or interleukin-1β (IL-1β) decreased serum iron within 6 hours, and was accompanied by significant increases in osseous Fgf23 mRNA expression and serum levels of C-terminal FGF23, but no changes in intact FGF23. Chronic inflammation induced by repeated bacteria or IL-1β injections decreased serum iron, increased osseous Fgf23 mRNA and serum C-terminal FGF23, but modestly increased biologically active, intact FGF23 serum levels. Chronic iron deficiency mimicked chronic inflammation. Increased osseous FGF23 cleavage rather than a prolonged half-life of C-terminal FGF23 fragments accounted for the elevated C-terminal FGF23 but near-normal intact FGF23 levels in inflammation. IL-1β injection increased Fgf23 mRNA and C-terminal FGF23 levels similarly in wild-type and Col4a3KO mice with CKD, but markedly increased intact FGF23 levels only in the CKD mice. Inflammation increased Fgf23 transcription by activating Hif1α signaling. Thus, inflammation and iron deficiency stimulate FGF23 production. Simultaneous upregulation of FGF23 cleavage in osteocytes maintains near-normal levels of biologically active, intact circulating FGF23, whereas downregulated or impaired FGF23 cleavage may contribute to elevated intact serum FGF23 in CKD.


Circulation | 2012

Interleukin-10 Treatment Attenuates Pressure Overload–Induced Hypertrophic Remodeling and Improves Heart Function via Signal Transducers and Activators of Transcription 3–Dependent Inhibition of Nuclear Factor-κB

Suresh K Verma; Prasanna Krishnamurthy; David Barefield; Neha Singh; Rajesh Gupta; Erin Lambers; Melissa Thal; Alexander R. Mackie; Eneda Hoxha; Veronica Ramirez; Gangjian Qin; Sakthivel Sadayappan; Asish K. Ghosh; Raj Kishore

Background— Inflammation plays a critical role in adverse cardiac remodeling and heart failure. Therefore, approaches geared toward inhibiting inflammation may provide therapeutic benefits. We tested the hypotheses that genetic deletion of interleukin-10 (IL-10), a potent antiinflammatory cytokine, exacerbates pressure overload–induced adverse cardiac remodeling and hypertrophy and that IL-10 therapy inhibits this pathology. Methods and Results— Cardiac hypertrophy was induced in wild-type and IL-10 knockout mice by isoproterenol (ISO) infusion. ISO-induced left ventricular dysfunction and hypertrophic remodeling, including fibrosis and fetal gene expression, were further exaggerated in knockout mice compared with wild-type mice. Systemic recombinant mouse IL-10 administration markedly improved left ventricular function and not only inhibited but also reversed ISO-induced cardiac remodeling. Intriguingly, a very similar cardioprotective response of IL-10 was found in transverse aortic constriction–induced hypertrophy and heart failure models. In neonatal rat ventricular myocytes and H9c2 myoblasts, ISO activated nuclear factor-&kgr;B and inhibited signal transducers and activators of transcription 3 (STAT3) phosphorylation. Interestingly, IL-10 suppressed ISO-induced nuclear factor-&kgr;B activation and attenuated STAT3 inhibition. Moreover, pharmacological and genetic inhibition of STAT3 reversed the protective effects of IL-10, whereas ectopic expression of constitutively active STAT3 mimicked the IL-10 responses on the ISO effects, confirming that the IL-10–mediated inhibition of nuclear factor-&kgr;B is STAT3 dependent. Conclusion— Taken together, our results suggest IL-10 treatment as a potential therapeutic approach to limit the progression of pressure overload–induced adverse cardiac remodeling.


Circulation Research | 2011

Interleukin-10 Deficiency Impairs Bone Marrow–Derived Endothelial Progenitor Cell Survival and Function in Ischemic Myocardium

Prasanna Krishnamurthy; Melissa Thal; Suresh K Verma; Eneda Hoxha; Erin Lambers; Veronica Ramirez; Gangjian Qin; Douglas W. Losordo; Raj Kishore

Rationale: Endothelial progenitor cell (EPC) survival and function in the injured myocardium is adversely influenced by hostile microenvironment such as ischemia, hypoxia, and inflammatory response, thereby compromising full benefits of EPC-mediated myocardial repair. Objective: We hypothesized that interleukin-10 (IL-10) modulates EPC biology leading to enhanced survival and function after transplantation in the ischemic myocardium. Methods and Results: Myocardial infarction (MI)-induced mobilization of bone marrow EPC (Sca-1+Flk1+cells) into the circulation was significantly impaired in IL-10 knockout (KO) mice. Bone marrow transplantation to replace IL-10 KO marrow with wild-type (WT) marrow attenuated these effects. Impaired mobilization was associated with lower stromal cell–derived factor (SDF)-1 expression levels in the myocardium of KO mice. Interestingly, SDF-1 administration reversed mobilization defect in KO mice. In vitro, hypoxia-mediated increases in CXCR4 expression and cell survival were lower in IL-10–deficient EPCs. Furthermore, SDF-1–induced migration of WT EPCs was inhibited by AMD3100, an inhibitor of CXCR4. To further study the effect of IL-10 on in vivo EPC survival and engraftment into vascular structures, GFP-labeled EPC were injected intramyocardially after induction of MI, and the mice were treated with either saline or recombinant IL-10. The IL-10–treated group showed increased retention of transplanted EPCs in the myocardium and was associated with significantly reduced EPC apoptosis after MI. Interestingly, increased EPC retention and their association with the vascular structures was observed in IL-10–treated mice. Increased EPC survival and angiogenesis in the myocardium of IL-10–treated mice corroborated with improved left ventricular function, reduced infarct size, and fibrosis in the myocardium. In vitro, IL-10–induced increase in VEGF expression in WT EPC was abrogated by STAT3 inhibitor, suggesting IL-10 signals through STAT3 activation. Conclusions: Taken together, our studies demonstrate that MI-induced EPC mobilization was impaired in IL-10 KO mice and that IL-10 increases EPC survival and function possibly through activation of STAT3/VEGF signaling cascades, leading to attenuation of MI-induced left ventricular dysfunction and remodeling.


Circulation Research | 2012

Enhanced Angiogenic and Cardiomyocyte Differentiation Capacity of Epigenetically Reprogrammed Mouse and Human Endothelial Progenitor Cells Augments Their Efficacy for Ischemic Myocardial Repair

Melissa Thal; Prasanna Krishnamurthy; Alexander R. Mackie; Eneda Hoxha; Erin Lambers; Suresh K Verma; Veronica Ramirez; Gangjian Qin; Douglas W. Losordo; Raj Kishore

Rationale: Although bone marrow endothelial progenitor cell (EPC)-based therapies improve the symptoms in patients with ischemic heart disease, their limited plasticity and decreased function in patients with existing heart disease limit the full benefit of EPC therapy for cardiac regenerative medicine. Objective: We hypothesized that reprogramming mouse or human EPCs, or both, using small molecules targeting key epigenetic repressive marks would lead to a global increase in active gene transcription, induce their cardiomyogenic potential, and enhance their inherent angiogenic potential. Method and Results: Mouse Lin-Sca1+CD31+ EPCs and human CD34+ cells were treated with inhibitors of DNA methyltransferases (5-Azacytidine), histone deacetylases (valproic acid), and G9a histone dimethyltransferase. A 48-hour treatment led to global increase in active transcriptome, including the reactivation of pluripotency-associated and cardiomyocyte-specific mRNA expression, whereas endothelial cell–specific genes were significantly upregulated. When cultured under appropriate differentiation conditions, reprogrammed EPCs showed efficient differentiation into cardiomyocytes. Treatment with epigenetic-modifying agents show marked increase in histone acetylation on cardiomyocyte and pluripotent cell–specific gene promoters. Intramyocardial transplantation of reprogrammed mouse and human EPCs in an acute myocardial infarction mouse model showed significant improvement in ventricular functions, which was histologically supported by their de novo cardiomyocyte differentiation and increased capillary density and reduced fibrosis. Importantly, cell transplantation was safe and did not form teratomas. Conclusions: Taken together, our results suggest that epigenetically reprogrammed EPCs display a safe, more plastic phenotype and improve postinfarct cardiac repair by both neocardiomyogenesis and neovascularization.


Stem Cells | 2012

Histone Deacetylase 1 Deficiency Impairs Differentiation and Electrophysiological Properties of Cardiomyocytes Derived from Induced Pluripotent Cells

Eneda Hoxha; Erin Lambers; Hehuang Xie; Alexandre de Andrade; Prasanna Krishnamurthy; J. A. Wasserstrom; Veronica Ramirez; Melissa Thal; Suresh K Verma; Marcelo B. Soares; Raj Kishore

Epigenetic and chromatin modifications play particularly important roles in embryonic and induced pluripotent stem cells (ESCs and iPSCs) allowing for the cells to both differentiate and dedifferentiate back to a pluripotent state. We analyzed how the loss of a key chromatin‐modifying enzyme, histone deacetylase 1 (HDAC1), affects early and cardiovascular differentiation of both ESCs and iPSCs. We also investigated potential differences between these two cell types when differentiation is induced. Our data indicate an essential role for HDAC1 in deacetylating regulatory regions of key pluripotency‐associated genes during early differentiation. Although HDAC1 functions primarily as a HDAC, its loss also affects DNA methylation in ESCs and iPSCs both during pluripotency and differentiation. We show that HDAC1 plays a crucial, nonredundant role in cardiomyocyte differentiation and maturation. Our data also elucidate important differences between ESCs and iPSCs, when levels of this enzyme are reduced, that affect their ability to differentiate into functional cardiomyocytes. As varying levels of chromatin‐modifying enzymes are likely to exist in patient‐derived iPSCs, understanding the molecular circuitry of these enzymes in ESCs and iPSCs is critical for their potential use in cardiovascular therapeutic applications. STEM CELLS2012;30:2412–2422


Journal of Biological Chemistry | 2013

Alcohol Consumption Negates Estrogen-mediated Myocardial Repair in Ovariectomized Mice by Inhibiting Endothelial Progenitor Cell Mobilization and Function

Alexander R. Mackie; Prasanna Krishnamurthy; Suresh K Verma; Tina Thorne; Veronica Ramirez; Gangjian Qin; Tatiana Abramova; Hiromichi Hamada; Douglas W. Losordo; Raj Kishore

Background: Estrogen supplementation enhances voluntary alcohol consumption in ovariectomized rodents. The effects of the enhanced alcohol consumption on post-infarct myocardial repair are unknown. Results: Ethanol-mediated suppression of endothelial progenitor cells produces diminished post-ischemic left ventricular function. Conclusion: Estrogen-induced increases in alcohol consumption negatively compete with the cardioprotective effects of estrogen. Significance: Alcohol consumption during estrogen replacement therapy must be observed closely. We have shown previously that estrogen (estradiol, E2) supplementation enhances voluntary alcohol consumption in ovariectomized female rodents and that increased alcohol consumption impairs ischemic hind limb vascular repair. However, the effect of E2-induced alcohol consumption on post-infarct myocardial repair and on the phenotypic/functional properties of endothelial progenitor cells (EPCs) is not known. Additionally, the molecular signaling of alcohol-estrogen interactions remains to be elucidated. This study examined the effect of E2-induced increases in ethanol consumption on post-infarct myocardial function/repair. Ovariectomized female mice, implanted with 17β-E2 or placebo pellets were given access to alcohol for 6 weeks and subjected to acute myocardial infarction. Left ventricular functions were consistently depressed in mice consuming ethanol compared with those receiving only E2. Alcohol-consuming mice also displayed significantly increased infarct size and reduced capillary density. Ethanol consumption also reduced E2-induced mobilization and homing of EPCs to injured myocardium compared with the E2-alone group. In vitro, exposure of EPCs to ethanol suppressed E2-induced proliferation, survival, and migration and markedly altered E2-induced estrogen receptor-dependent cell survival signaling and gene expression. Furthermore, ethanol-mediated suppression of EPC biology was endothelial nitric oxide synthase-dependent because endothelial nitric oxide synthase-null mice displayed an exaggerated response to post-acute myocardial infarction left ventricular functions. These data suggest that E2 modulation of alcohol consumption, and the ensuing EPC dysfunction, may negatively compete with the beneficial effects of estrogen on post-infarct myocardial repair.


PLOS ONE | 2012

Elucidation of a novel pathway through which HDAC1 controls cardiomyocyte differentiation through expression of SOX-17 and BMP2.

Eneda Hoxha; Erin Lambers; J. A. Wasserstrom; Alexander R. Mackie; Veronica Ramirez; Tatiana Abramova; Suresh K Verma; Prasanna Krishnamurthy; Raj Kishore

Embryonic Stem Cells not only hold a lot of potential for use in regenerative medicine, but also provide an elegant and efficient way to study specific developmental processes and pathways in mammals when whole animal gene knock out experiments fail. We have investigated a pathway through which HDAC1 affects cardiovascular and more specifically cardiomyocyte differentiation in ES cells by controlling expression of SOX17 and BMP2 during early differentiation. This data explains current discrepancies in the role of HDAC1 in cardiovascular differentiation and sheds light into a new pathway through which ES cells determine cardiovascular cell fate.


Journal of The American Society of Nephrology | 2017

Ascending Vasa Recta Are Angiopoietin/Tie2-Dependent Lymphatic-Like Vessels

Yael Kenig-Kozlovsky; Rizaldy P. Scott; Tuncer Onay; Isabel Anna Carota; Benjamin R. Thomson; Hyea Jin Gil; Veronica Ramirez; Shinji Yamaguchi; Christine E. Tanna; Stefan Heinen; Christine Wu; Radu V. Stan; Janet D. Klein; Jeff M. Sands; Guillermo Oliver; Susan E. Quaggin

Urinary concentrating ability is central to mammalian water balance and depends on a medullary osmotic gradient generated by a countercurrent multiplication mechanism. Medullary hyperosmolarity is protected from washout by countercurrent exchange and efficient removal of interstitial fluid resorbed from the loop of Henle and collecting ducts. In most tissues, lymphatic vessels drain excess interstitial fluid back to the venous circulation. However, the renal medulla is devoid of classic lymphatics. Studies have suggested that the fenestrated ascending vasa recta (AVRs) drain the interstitial fluid in this location, but this function has not been conclusively shown. We report that late gestational deletion of the angiopoietin receptor endothelial tyrosine kinase 2 (Tie2) or both angiopoietin-1 and angiopoietin-2 prevents AVR formation in mice. The absence of AVR associated with rapid accumulation of fluid and cysts in the medullary interstitium, loss of medullary vascular bundles, and decreased urine concentrating ability. In transgenic reporter mice with normal angiopoietin-Tie2 signaling, medullary AVR exhibited an unusual hybrid endothelial phenotype, expressing lymphatic markers (prospero homeobox protein 1 and vascular endothelial growth factor receptor 3) as well as blood endothelial markers (CD34, endomucin, platelet endothelial cell adhesion molecule 1, and plasmalemmal vesicle-associated protein). Taken together, our data redefine the AVRs as Tie2 signaling-dependent specialized hybrid vessels and provide genetic evidence of the critical role of AVR in the countercurrent exchange mechanism and the structural integrity of the renal medulla.


Epigenetics | 2017

A novel acetyltransferase p300 inhibitor ameliorates hypertension-associated cardio-renal fibrosis

Rahul Rai; Suresh K Verma; David Kim; Veronica Ramirez; Elizabeth Lux; Chengjin Li; Susmita Sahoo; Lisa D. Wilsbacher; Douglas E. Vaughan; Susan E. Quaggin; Asish K. Ghosh

ABSTRACT Hypertension-associated end-organ damage commonly leads to cardiac and renal fibrosis. As no effective anti-fibrotic therapy currently exists, the unchecked progression of fibrogenesis manifests as cardio-renal failure and early death. We have previously shown that FATp300—p300 with intrinsic factor acetyltransferase activity—is an essential epigenetic regulator of fibrogenesis, and is elevated in several fibrotic tissues. In this report, we investigate the therapeutic efficacy of a novel FATp300 inhibitor, L002, in a murine model of hypertensive cardio-renal fibrosis. Additionally, we examine the effects of L002 on cellular pro-fibrogenic processes and provide mechanistic insights into its antifibrogenic action. Utilizing cardiac fibroblasts, podocytes, and mesangial cells, we demonstrate that L002 blunts FATp300-mediated acetylation of specific histones. Further, incubating cells with L002 suppresses several pro-fibrogenic processes including cellular proliferation, migration, myofibroblast differentiation and collagen synthesis. Importantly, systemic administration of L002 in mice reduces hypertension-associated pathological hypertrophy, cardiac fibrosis and renal fibrosis. The anti-hypertrophic and anti-fibrotic effects of L002 were independent of blood pressure regulation. Our work solidifies the role of epigenetic regulator FATp300 in fibrogenesis and establishes it as a pharmacological target for reducing pathological matrix remodeling and associated pathologies. Additionally, we discover a new therapeutic role of L002, as it ameliorates hypertension-induced cardio-renal fibrosis and antagonizes pro-fibrogenic responses in fibroblasts, podocytes and mesangial cells.

Collaboration


Dive into the Veronica Ramirez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erin Lambers

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Eneda Hoxha

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Melissa Thal

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Gangjian Qin

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Sol Misener

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge