Veronica Ribé
Mälardalen University College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Veronica Ribé.
Journal of Hazardous Materials | 2009
Kristin Elgh-Dalgren; Zandra Arwidsson; Aida Camdzija; Ragnar Sjöberg; Veronica Ribé; Sylvia Waara; Bert Allard; Thomas von Kronhelm; Patrick A.W. van Hees
Soil washing of a soil with a mixture of both polycyclic aromatic hydrocarbons (PAH) and As was evaluated in laboratory and pilot scale, utilizing both single and mixtures of different additives. The highest level of decontamination was achieved with a combination of 0.213 M of the chelating agent MGDA and 3.2 x CMC* of a non-ionic, alkyl glucoside surfactant at pH 12 (Ca(OH)(2)). This combination managed to reach Swedish threshold values within 1 0 min of treatment when performed at elevated temperature (50 degrees C), with initial contaminant concentrations of As=105+/-4 mg/kg and US-EPA PAH(16)=46.0+/-2.3mg/kg. The main mechanisms behind the removal were the pH effect for As and a combination of SOM ionization as a result of high pH and micellar solubilization for PAHs. Implementation of the laboratory results utilizing a pilot scale equipment did not improve the performance, which may be due to the shorter contact time between the washing solution and the particles, or changes in physical characteristics of the leaching solution due to the elevated pressure utilized. The ecotoxicological evaluation, Microtox, demonstrated that all soil washing treatments increased the toxicity of soil leachates, possibly due to increased availability of contaminants and toxicity of soil washing solutions to the test organism.
Waste Management | 2012
Veronica Ribé; Emma Nehrenheim; Monica Odlare; Lillemor Gustavsson; Rune Berglind; Åke Forsberg
When selecting a landfill leachate treatment method the contaminant composition of the leachate should be considered in order to obtain the most cost-effective treatment option. In this study the filter material pine bark was evaluated as a treatment for five landfill leachates originating from different cells of the same landfill in Sweden. The objective of the study was to determine the uptake, or release, of metals and dissolved organic carbon (DOC) during a leaching test using the pine bark filter material with the five different landfill leachates. Furthermore the change of toxicity after treatment was studied using a battery of aquatic bioassays assessing luminescent bacteria (Vibrio fischeri) acute toxicity (30-min Microtox®), immobility of the crustacean Daphnia magna, growth inhibition of the algae Pseudokirchneriella subcapitata and the aquatic plant Lemna minor; and genotoxicity with the bacterial Umu-C assay. The results from the toxicity tests and the chemical analysis were analyzed in a Principal Component Analysis and the toxicity of the samples before and after treatment was evaluated in a toxicity classification. The pine bark filter material reduced the concentrations of metal contaminants from the landfill leachates in the study, with some exceptions for Cu and Cd. The Zn uptake of the filter was high for heavily contaminated leachates (≥73%), although some desorption of zinc occurred in less contaminated waters. Some of the leachates may require further treatment due to discharge into a natural recipient in order to reduce the risk of possible biological effects. The difference in pH changes between the different leachates was probably due to variations in buffering capacity, affected by physicochemical properties of the leachate. The greatest desorption of phenol during filtration occurred in leachates with high conductivity or elevated levels of metals or salts. Generally, the toxicity classification of the leachates implies that although filter treatment with pine bark removes metal contaminants from the leachates effectively, it does not alter leachate toxicity noticeably. The leachates with the highest conductivity, pH and metal concentrations are most strongly correlated with an increased toxic response in the score plots of both untreated and treated leachates. This is in line with the toxicity classification of the leachate samples. The results from this study highlight the importance of evaluating treatment efficiency from the perspective of potential recipient effects, rather than in terms of residual concentrations of individual contaminants when treating waters with a complex contamination matrix, such as landfill leachates.
Journal of Hazardous Materials | 2009
Veronica Ribé; Emma Nehrenheim; Monica Odlare; Sylvia Waara
Low cost sorbents have been widely studied in recent years in the search for filter materials that retain contaminants from water. One promising, low cost material is pine bark, a by-product from the forest industry. Many studies have shown that pine bark has great potential for the treatment of metals and organic substances, as a replacement for other commercial sorbents such as active carbon. However, some potential problems are introduced through the use of natural materials and by-products. One such problem that must be addressed is the possibility of leaching of contaminants from the filter material, especially in the initial filtration step or during flushes of lightly contaminated water, e.g. during rainfall for on-site treatment of storm water or landfill leachate. The aim of this preliminary study was therefore to identify potential risks and limitations of using pine bark as a filter material. Leachate from a standardized batch test was analysed for metals, dissolved organic carbon (DOC) and phenols. In addition to these chemical analyses, an ecotoxicological test was conducted using the test organism Daphnia magna. The results showed significant leaching of DOC and some metals. Only a small fraction of the DOC was present as phenols. The leachate was however found to be toxic to the test organism without pH adjustment, and the EC(50) was established at an approximate leachate concentration of 40%. This was concluded to be related to the low pH in the eluate, since no toxicity was observed after pH adjustment before the toxicity tests.
Ecotoxicology and Environmental Safety | 2013
B. Huerta Buitrago; P. Ferrer Muñoz; Veronica Ribé; Maria Larsson; Magnus Engwall; Ewa Wojciechowska; Sylvia Waara
Four bioassays were used in this study for the hazard assessment of sediments from sediment traps and several ponds in a treatment wetland for landfill leachate at Atleverket, Sweden. In the 6-day solid phase microbiotest with the sediment-dwelling crustacean Heterocypris incongruens both acute and chronic effects were observed with a gradual decrease and loss of toxicity with treatment in the wetland system. Some samples showed a low toxicity in porewater and only one sample was weakly toxic in the whole sediment test when assessed with Aliivibrio fischeri (Vibro fischeri). No genotoxicity was detected in the umu test. The toxicity response in the H4IIE- luc test evaluating the presence of dioxin-like compounds was considerably higher in the samples from the sediment traps. The hazard of the sediment therefore appears to be highest in the sediment traps and pond 1 with the methods employed. The result indicates that the wetland system has a design supporting the concentration and sequestration of toxic substances in the first part of the wetland. Based upon the results we suggest that hazard assessment of sediments from other treatment wetlands for landfill leachate should be conducted.
Journal of Hazardous Materials | 2012
Veronica Ribé; Elisabet Aulenius; Emma Nehrenheim; Ulrika Martell; Monica Odlare
With a greater focus on soil protection in the E.U., the need for ecological risk assessment tools for cost-effective characterization of site contamination is increasing. One of the challenges in assessing the risk of soil contaminants is to accurately account for changes in mobility of contaminants over time, as a result of ageing. Improved tools for measuring the bioavailable and mobile fraction of contaminants is therefore highly desirable. In this study the Triad method was used to perform a risk characterization of a former surface treatment and metal industry in Eskilstuna, Sweden. The risk assessment confirmed the environmental risk of the most heavily contaminated sample and showed that the toxic effect was most likely caused by high metal concentrations. The assessment of the two soil samples with low to moderate metal contamination levels was more complex, as there was a higher deviation between the results from the three lines of evidence; chemistry, (eco)toxicology and ecology. For the slightly less contaminated sample of the two, a weighting of the results from the ecotoxicological LoE would be recommended in order to accurately determine the risk of the metal contamination at the sampling site as the toxic effect detected in the Microtox® test and Ostracodtoxkit™ test was more likely to be due to oil contamination. The soil sample with higher total metal concentrations requires further ecotoxicological testing, as the integrated risk value indicated an environmental risk from metal contamination. The applied methodology, the Triad method, is considered appropriate for conducting improved environmental risk assessments in order to achieve sustainable remediation processes.
Waste Management | 2014
Veronica Ribé; Emma Nehrenheim; Monica Odlare
Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction as well as a source of renewable energy. In the process fly and bottom ash is generated as a waste material. The ash residue may vary greatly in composition depending on the type of waste incinerated and it can contain elevated levels of harmful contaminants such as heavy metals. In this study, the ecotoxicity of a weathered, untreated incineration bottom ash was characterized as defined by the H14 criterion of the EU Waste Framework Directive by means of an elemental analysis, leaching tests followed by a chemical analysis and a combination of aquatic and solid-phase bioassays. The experiments were conducted to assess the mobility and bioavailability of ash contaminants. A combination of aquatic and terrestrial bioassays was used to determine potentially adverse acute effects of exposure to the solid ash and aqueous ash leachates. The results from the study showed that the bottom ash from a municipal waste incineration plant in mid-Sweden contained levels of metals such as Cu, Pb and Zn, which exceeded the Swedish EPA limit values for inert wastes. The chemical analysis of the ash leachates showed high concentrations of particularly Cr. The leachate concentration of Cr exceeded the limit value for L/S 10 leaching for inert wastes. Filtration of leachates prior to analysis may have underestimated the leachability of complex-forming metals such as Cu and Pb. The germination test of solid ash and ash leachates using T. repens showed a higher inhibition of seedling emergence of seeds exposed to the solid ash than the seeds exposed to ash leachates. This indicated a relatively low mobility of toxicants from the solid ash into the leachates, although some metals exceeded the L/S 10 leaching limit values for inert wastes. The Microtox® toxicity test showed only a very low toxic response to the ash leachate exposure, while the D. magna immobility test showed a moderately high toxic effect of the ash leachates. Overall, the results from this study showed an ecotoxic effect of the solid MSW bottom ash and the corresponding ash leachates. The material may therefore pose an environmental risk if used in construction applications. However, as the testing of the solid ash was rather limited and the ash leachate showed an unusually high leaching of Cr, further assessments are required in order to conclusively characterize the bottom ash studied herein as hazardous according to the H14 criterion.
Environmental Sciences Europe | 2014
Lillemor Gustavsson; Sebastian Heger; Jörgen Ejlertsson; Veronica Ribé; Henner Hollert; Steffen Keiter
BackgroundMethane production as biofuels is a fast and strong growing technique for renewable energy. Substrates like waste (e.g. food, sludge from waste water treatment plants (WWTP), industrial wastes) can be used as a suitable resource for methane gas production, but in some cases, with elevated toxicity in the digestion residue. Former investigations have shown that co-digesting of contaminated waste such as sludge together with other substrates can produce a less toxic residue. In addition, wetlands and reed beds demonstrated good results in dewatering and detoxifying of sludge. The aim of the present study was to investigate if the toxicity may alter in industrial sludge co-digested with oat and post-treatment in reed beds. In this study, digestion of sludge from Bjorkborn industrial area in Karlskoga (reactor D6) and co-digestion of the same sludge mixed with oat (reactor D5) and post-treatment in reed beds were investigated in parallel. Methane production as well as changes in cytotoxicity (Microtox(R); ISO 11348–3), genotoxicity (Umu-C assay; ISO/13829) and AhR-mediated toxicity (7-ethoxyresorufin-O-deethylase (EROD) assay using RTW cells) were measured.ResultsThe result showed good methane production of industrial sludge (D6) although the digested residue was more toxic than the ingoing material measured using microtox30min and Umu-C. Co-digestion of toxic industrial sludge and oat (D5) showed higher methane production and significantly less toxic sludge residue than reactor D6. Furthermore, dewatering and treatment in reed beds showed low and non-detectable toxicity in reed bed material and outgoing water as well as reduced nutrients.ConclusionsCo-digestion of sludge and oat followed by dewatering and treatment of sludge residue in reed beds can be a sustainable waste management and energy production. We recommend that future studies should involve co-digestion of decontaminated waste mixed with different non-toxic material to find a substrate mixture that produce the highest biogas yield and lowest toxicity within the sludge residue.
Applied Energy | 2011
Monica Odlare; Emma Nehrenheim; Veronica Ribé; Eva Thorin; Marita Gavare; Mara Grube
Water Air and Soil Pollution | 2011
Kristin Elgh-Dalgren; Zandra Arwidsson; Veronica Ribé; Sylvia Waara; Thomas von Kronhelm; Patrick A.W. van Hees
Sardinia 2011 Symposium, Thirteenth International Waste Management and Landfill Symposium | 2011
Veronica Ribé; Emma Nehrenheim; Monica Odlare; Rune Berglind; Åke Forsberg