Verónica S. Santander
National University of Cordoba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Verónica S. Santander.
Molecular and Cellular Biochemistry | 2006
Verónica S. Santander; C. Gastón Bisig; Silvia A. Purro; Cesar H. Casale; Carlos A. Arce; Héctor S. Barra
In cells of neural and non-neural origin, tubulin forms a complex with plasma membrane Na+,K+-ATPase, resulting in inhibition of the enzyme activity. When cells are treated with 1 mM L-glutamate, the complex is dissociated and enzyme activity is restored. Now, we found that in CAD cells, ATPase is not activated by L-glutamate and tubulin/ATPase complex is not present in membranes. By investigating the causes for this characteristic, we found that tubulin must be acetylated in order to associate with ATPase and to inhibit its catalytic activity. In CAD cells, the acetylated tubulin isotype is absent. Treatment of CAD cells with deacetylase inhibitors (trichostatin A or tubacin) caused appearance of acetylated tubulin, formation of tubulin/ATPase complex, and reduction of membrane ATPase activity. In these treated cells, addition of 1 mM L-glutamate dissociated the complex and restored the enzyme activity. Cytosolic tubulin from trichostatin A-treated but not from non-treated cells inhibited ATPase activity. These findings indicate that the acetylated isotype of tubulin is required for interaction with membrane Na+,K+-ATPase and consequent inhibition of enzyme activity.
The International Journal of Biochemistry & Cell Biology | 2012
Juan F. Rivelli; Marina R. Amaiden; Noelia E. Monesterolo; Gabriela Previtali; Verónica S. Santander; Adriana Fernandez; Carlos A. Arce; Cesar H. Casale
Our previous studies demonstrated that acetylated tubulin forms a complex with Na(+),K(+)-ATPase and thereby inhibits its enzyme activity in cultured COS and CAD cells. The enzyme activity was restored by treatment of cells with l-glutamate, which caused dissociation of the acetylated tubulin/Na(+),K(+)-ATPase complex. Addition of glucose, but not elimination of glutamate, led to re-formation of the complex and inhibition of the Na(+),K(+)-ATPase activity. The purpose of the present study was to elucidate the mechanism underlying this effect of glucose. We found that exposure of cells to high glucose concentrations induced: (a) microtubule formation; (b) activation of aldose reductase by the microtubules; (c) association of tubulin with membrane; (d) formation of the acetylated tubulin/Na(+),K(+)-ATPase complex and consequent inhibition of enzyme activity. Exposure of cells to sorbitol caused similar effects. Studies on erythrocytes from diabetic patients and on tissues containing insulin-insensitive glucose transporters gave similar results. Na(+),K(+)-ATPase activity was >50% lower and membrane-associated tubulin content was >200% higher in erythrocyte membranes from diabetic patients as compared with normal subjects. Immunoprecipitation analysis showed that acetylated tubulin was a constituent of a complex with Na(+),K(+)-ATPase in erythrocyte membranes from diabetic patients. Based on these findings, we propose a mechanism whereby glucose triggers a synergistic effect of tubulin and sorbitol, leading to activation of aldose reductase, microtubule formation, and consequent Na(+),K(+)-ATPase inhibition.
FEBS Journal | 2008
Noelia E. Monesterolo; Verónica S. Santander; Alexis N. Campetelli; Carlos A. Arce; Héctor S. Barra; Cesar H. Casale
We have recently shown that acetylated tubulin interacts with plasma membrane Na+,K+‐ATPase and inhibits its enzyme activity in several types of cells. H+‐ATPase of Saccharomyces cerevisiae is similarly inhibited by interaction with acetylated tubulin. The activities of both these ATPases are restored upon dissociation of the acetylated tubulin/ATPase complex. Here, we report that in plasma membrane vesicles isolated from brain synaptosomes, another P‐type ATPase, plasma membrane Ca2+‐ATPase (PMCA), undergoes enzyme activity regulation by its association/dissociation with acetylated tubulin. The presence of acetylated tubulin/PMCA complex in membrane vesicles was demonstrated by analyzing the behavior of acetylated tubulin in a detergent partition, and by immunoprecipitation experiments. PMCA is known to be stimulated by ethanol and calmodulin at physiological concentrations. We found that treatment of plasma membrane vesicles with these reagents induced dissociation of the complex, with a concomitant restoration of enzyme activity. Conversely, incubation of vesicles with exogenous tubulin induced the association of acetylated tubulin with PMCA, and the inhibition of enzyme activity. These findings indicate that activation of synaptosomal PMCA by ethanol and calmodulin involves dissociation of the acetylated tubulin/PMCA complex. This regulatory mechanism was shown to also operate in living cells.
Journal of Hypertension | 2012
Marina R. Amaiden; Noelia E. Monesterolo; Verónica S. Santander; Alexis N. Campetelli; Carlos A. Arce; Juan Pié; Sandra I. Hope; Marcelo S. Vatta; Cesar H. Casale
Objective: To test the hypothesis that erythrocyte deformability is influenced by changes in the content of membrane tubulin (Mem-tub). Methods and results: Human erythrocytes contain tubulin distributed in three pools (membrane, sedimentable, soluble). Erythrocytes from hypertensive humans have a higher proportion of Mem-tub. Increased Mem-tub content in hypertensive patients was correlated with decreased erythrocyte deformability. Treatment of erythrocytes from normotensive individuals with taxol increased Mem-tub content and reduced deformability, whereas treatment of hypertensive patients erythrocytes with nocodazole had the opposite effect. In-vivo experiments with rats were performed to examine the possible relationship between Mem-tub content, erythrocyte deformability, and blood pressure. Spontaneously hypertensive rats (SHRs) showed lower erythrocyte deformability than normotensive Wistar rats. During the development of hypertension in SHR, tubulin in erythrocytes is translocated to the membrane, and this process is correlated with decreased deformability. In-vivo treatment (intraperitoneal injection) of SHR with nocodazole decreased Mem-tub content, increased erythrocyte deformability, and decreased blood pressure, whereas treatment of Wistar rats with taxol had the opposite effects. Conclusion: These findings indicate that increased Mem-tub content contributes to reduced erythrocyte deformability in hypertensive animals.
Cellular and Molecular Life Sciences | 2011
Marina R. Amaiden; Verónica S. Santander; Noelia E. Monesterolo; Alexis N. Campetelli; Juan F. Rivelli; Gabriela Previtali; Carlos A. Arce; Cesar H. Casale
The presence of tubulin in human erythrocytes was demonstrated using five different antibodies. Tubulin was distributed among three operationally distinguishable pools: membrane, sedimentable structure and soluble fraction. It is known that in erythrocytes from hypertensive subjects (HS), the Na+, K+-ATPase (NKA) activity is partially inhibited as compared with erythrocytes from normal subjects (NS). In erythrocytes from HS the membrane tubulin pool is increased by ~150%. NKA was found to be forming a complex with acetylated tubulin that results in inhibition of enzymes. This complex was also increased in erythrocytes from HS. Treatment of erythrocytes from HS with nocodazol caused a decrease of acetylated tubulin in the membrane and stimulation of NKA activity, whereas taxol treatment on erythrocytes from NS had the opposite effect. These results suggest that, in erythrocytes from HS, tubulin was translocated to the membrane, where it associated with NKA with the consequent enzyme inhibition.
Biochimica et Biophysica Acta | 2013
Alexis N. Campetelli; Noelia E. Monesterolo; Gabriela Previtali; Verónica S. Santander; Marina R. Amaiden; Carlos A. Arce; Javier Valdez-Taubas; Cesar H. Casale
BACKGROUND Glucose induces H(+)-ATPase activation in Saccharomyces cerevisiae. Our previous study showed that (i) S. cerevisiae plasma membrane H(+)-ATPase forms a complex with acetylated tubulin (AcTub), resulting in inhibition of the enzyme activity; (ii) exogenous glucose addition results in the dissociation of the complex and recovery of the enzyme activity. METHODS We used classic biochemical and molecular biology tools in order to identify the key components in the mechanism that leads to H(+)-ATPase activation after glucose treatment. RESULTS We demonstrate that glucose-induced dissociation of the complex is due to pH-dependent activation of a protease that hydrolyzes membrane tubulin. Biochemical analysis identified a serine protease with a kDa of 35-40 and an isoelectric point between 8 and 9. Analysis of several knockout yeast strains led to the detection of Lpx1p as the serine protease responsible of tubulin proteolysis. When lpx1Δ cells were treated with glucose, tubulin was not degraded, the AcTub/H(+)-ATPase complex did not undergo dissociation, and H(+)-ATPase activation was significantly delayed. CONCLUSION Our findings indicate that the mechanism of H(+)-ATPase activation by glucose involves a decrease in the cytosolic pH and consequent activation of a serine protease that hydrolyzes AcTub, accelerating the process of the AcTub/H(+)-ATPase complex dissociation and the activation of the enzyme. GENERAL SIGNIFICANCE Our data sheds light into the mechanism by which acetylated tubulin dissociates from the yeast H(+)-ATPase, identifying a degradative step that remained unknown. This finding also proposes an indirect way to pharmacologically regulate yeast H(+)-ATPase activity and open the question about mechanistic similarities with other higher eukaryotes.
FEBS Journal | 2009
C. Gastón Bisig; María E. Chesta; Guillermo G. Zampar; Silvia A. Purro; Verónica S. Santander; Carlos A. Arce
In many laboratories, the requirement of microtubule‐associated proteins (MAPs) and the stabilization of microtubules for the elongation of neurites has been intensively investigated, with controversial results being obtained. We have observed that the neurite microtubules of Cath.a‐differentiated (CAD) cells, a mouse brain derived cell, are highly dynamic structures, and so we analyzed several aspects of the cytoskeleton to investigate the molecular causes of this phenomenon. Microtubules and microfilaments were present in proportions similar to those found in brain tissue and were distributed similarly to those in normal neurons in culture. Neurofilaments were also present. Analysis of tubulin isospecies originating from post‐translational modifications revealed an increased amount of tyrosinated tubulin, a diminished amount of the detyrosinated form and a lack of the Delta2 form. This tyrosination pattern is in agreement with highly dynamic microtubules. Using western blot analyses with specific antibodies, we found that CAD cells do not express several MAPs such as MAP1b, MAP2, Tau, doublecortin, and stable‐tubule‐only‐peptide. The presence of the genes corresponding to these MAPs was verified. The absence of the corresponding mRNAs confirmed the lack of expression of these proteins. The exception was Tau, whose mRNA was present. Among the several MAPs investigated, LIS1 was the only one to be expressed in CAD cells. In addition, we determined that neurites of CAD cells form and elongate at the same rate as processes in a primary culture of hippocampal neurons. Treatment with nocodazol precluded the formation of neurites, and induced the retraction of previously formed neurites. We conclude that the formation and elongation of neurites, at least in CAD cells, are dependent on microtubule integrity but not on their stabilization or the presence of MAPs.
FEBS Letters | 2015
Marina R. Amaiden; Verónica S. Santander; Noelia E. Monesterolo; Ayelen D. Nigra; Juan F. Rivelli; Alexis N. Campetelli; Juan Pié; Cesar H. Casale
Formation of tubulin/Na+,K+‐ATPase (NKA) complex in erythrocytes of hypertensive subjects results in a 50% reduction in NKA activity. We demonstrate here that detyrosinated tubulin, which is increased in hypertensive erythrocytes membranes, enhances the inhibitory effect of acetylated tubulin on NKA activity. Moreover, we report a reduced content and activity of the enzyme tubulin tyrosine ligase in erythrocytes of hypertensive subjects. Such alterations are related to changes in erythrocyte deformability. Our findings indicate that the detyrosination/tyrosination cycle of tubulin is important in regulation of NKA activity, and that abnormalities in this cycle are involved in hypertension development.
The International Journal of Biochemistry & Cell Biology | 2016
Ayelen D. Nigra; Noelia E. Monesterolo; Juan F. Rivelli; Marina R. Amaiden; Alexis N. Campetelli; Cesar H. Casale; Verónica S. Santander
Treatment of human erythrocytes with high glucose concentrations altered the content and distributions of three tubulin isotypes, with consequent reduction of erythrocyte deformability and osmotic resistance. In erythrocytes from diabetic subjects (D erythrocytes), (i) tubulin in the membrane-associated fraction (Mem-Tub) was increased and tubulin in the sedimentable fraction (Sed-Tub) was decreased, (ii) deformability was lower than in erythrocytes from normal subjects (N erythrocytes), and (iii) detyrosinated/acetylated tubulin content was higher in the Mem-Tub fraction and tyrosinated/acetylated tubulin content was higher in the Sed-Tub fraction, in comparison with N erythrocytes. Similar properties were observed for human N erythrocytes treated with high glucose concentrations, and for erythrocytes from rats with streptozotocin-induced diabetes. In N erythrocytes, high-glucose treatment caused translocation of tubulin from the Sed-Tub to Mem-Tub fraction, thereby reducing deformability and inducing acetylation/tyrosination in the Sed-Tub fraction. The increased tubulin acetylation in these cells resulted from inhibition of deacetylase enzymes. Increased tubulin acetylation and translocation of this acetylated tubulin to the Mem-Tub fraction were both correlated with reduced osmotic resistance. Our findings suggest that (i) high glucose concentrations promote tubulin acetylation and translocation of this tubulin to the membrane, and (ii) this tubulin is involved in regulation of erythrocyte deformability and osmotic fragility.
Biochimica et Biophysica Acta | 2015
Noelia E. Monesterolo; Ayelen D. Nigra; Alexis N. Campetelli; Verónica S. Santander; Juan F. Rivelli; Carlos A. Arce; Cesar H. Casale
Our previous studies demonstrated formation of a complex between acetylated tubulin and brain plasma membrane Ca(2+)-ATPase (PMCA), and the effect of the lipid environment on structure of this complex and on PMCA activity. Deformability of erythrocytes from hypertensive human subjects was reduced by an increase in membrane tubulin content. In the present study, we examined the regulation of PMCA activity by tubulin in normotensive and hypertensive erythrocytes, and the effect of exogenously added diacylglycerol (DAG) and phosphatidic acid (PA) on erythrocyte deformability. Some of the key findings were that: (i) PMCA was associated with tubulin in normotensive and hypertensive erythrocytes, (ii) PMCA enzyme activity was directly correlated with erythrocyte deformability, and (iii) when tubulin was present in the erythrocyte membrane, treatment with DAG or PA led to increased deformability and associated PMCA activity. Taken together, our findings indicate that PMCA activity is involved in deformability of both normotensive and hypertensive erythrocytes. This rheological property of erythrocytes is affected by acetylated tubulin and its lipid environment because both regulate PMCA activity.