Veronika Doubnerová
Charles University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Veronika Doubnerová.
Plant Science | 2011
Veronika Doubnerová; Helena Ryšlavá
Phosphoenolpyruvate carboxylase (PEPC), NADP-malic enzyme (NADP-ME), and pyruvate, phosphate dikinase (PPDK) participate in the process of concentrating CO₂ in C₄ photosynthesis. Non-photosynthetic counterparts of these enzymes, which are present in all plants, play important roles in the maintenance of pH and replenishment of Krebs cycle intermediates, thereby contributing to the biosynthesis of amino acids and other compounds and providing NADPH for biosynthesis and the antioxidant system. Enhanced activities of PEPC and/or NADP-ME and/or PPDK were found in plants under various types of abiotic stress, such as drought, high salt concentration, ozone, the absence of phosphate and iron or the presence of heavy metals in the soil. Moreover, the activities of all of these enzymes were enhanced in plants under biotic stress caused by viral infection. The functions of PEPC, NADP-ME and PPDK appear to be more important for plants under stress than under optimal growth conditions.
Journal of Proteomics | 2013
Helena Ryšlavá; Veronika Doubnerová; Daniel Kavan; Ondřej Vaněk
The detailed examination of enzyme molecules by mass spectrometry and other techniques continues to identify hundreds of distinct PTMs. Recently, global analyses of enzymes using methods of contemporary proteomics revealed widespread distribution of PTMs on many key enzymes distributed in all cellular compartments. Critically, patterns of multiple enzymatic and nonenzymatic PTMs within a single enzyme are now functionally evaluated providing a holistic picture of a macromolecule interacting with low molecular mass compounds, some of them being substrates, enzyme regulators, or activated precursors for enzymatic and nonenzymatic PTMs. Multiple PTMs within a single enzyme molecule and their mutual interplays are critical for the regulation of catalytic activity. Full understanding of this regulation will require detailed structural investigation of enzymes, their structural analogs, and their complexes. Further, proteomics is now integrated with molecular genetics, transcriptomics, and other areas leading to systems biology strategies. These allow the functional interrogation of complex enzymatic networks in their natural environment. In the future, one might envisage the use of robust high throughput analytical techniques that will be able to detect multiple PTMs on a global scale of individual proteomes from a number of carefully selected cells and cellular compartments. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
FEBS Journal | 2011
Helena Ryšlavá; Alžběta Kalendová; Veronika Doubnerová; Přemysl Skočdopol; Vinay Kumar; Zdeněk Kukačka; Petr Pompach; Ondřej Vaněk; Kristýna Slámová; Pavla Bojarová; Natallia Kulik; Rüdiger Ettrich; Vladimír Křen; Karel Bezouška
Fungal β‐N‐acetylhexosaminidases are inducible extracellular enzymes with many biotechnological applications. The enzyme from Penicillium oxalicum has unique enzymatic properties despite its close evolutionary relationship with other fungal hexosaminidases. It has high GalNAcase activity, tolerates substrates with the modified N‐acyl group better and has some other unusual catalytic properties. In order to understand these features, we performed isolation, biochemical and enzymological characterization, molecular cloning and molecular modelling. The native enzyme is composed of two catalytic units (65 kDa each) and two propeptides (15 kDa each), yielding a molecular weight of 160 kDa. Enzyme deglycosylated by endoglycosidase H had comparable activity, but reduced stability. We have cloned and sequenced the gene coding for the entire hexosaminidase from P. oxalicum. Sufficient sequence identity of this hexosaminidase with the structurally solved enzymes from bacteria and humans with complete conservation of all catalytic residues allowed us to construct a molecular model of the enzyme. Results from molecular dynamics simulations and substrate docking supported the experimental kinetic and substrate specificity data and provided a molecular explanation for why the hexosaminidase from P. oxalicum is unique among the family of fungal hexosaminidases.
Biological Chemistry | 2009
Karel Müller; Veronika Doubnerová; Helena Synková; Noemi Čeřovská; Helena Ryšlavá
Abstract The effect of viral infection on the regulation of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in Nicotiana tabacum L. leaves was studied. PEPC activity was 3 times higher in infected plant leaves compared to healthy plants. Activity of plant PEPC can be regulated, e.g., by de novo synthesis or reversible phosphorylation. The reason for the increase of PEPC activity as a consequence of PVYNTN infection was studied. The amount of PEPC determined by Western blot analysis or by relative estimation of PEPC mRNA by real-time PCR did not differ in control and PVYNTN-infected plants. Changes in post-translational modification of PEPC by phosphorylation were evaluated by comparing activity of the native and the dephosphorylated enzyme. The infected plants were characterized by a higher decrease of the enzyme activity after its dephosphorylation, which indicated a higher phosphorylation level. Immunochemical detection of phosphoproteins by Western blot analysis showed a more intensive band corresponding to PEPC from the infected material. This strengthens the hypothesis of an infection-related phosphorylation, which could be part of the plants response to pathogen attack. The physiological implications of the increase in PEPC activity during PVYNTN infection are discussed.
Biochimie | 2010
Martin Černý; Veronika Doubnerová; Karel Müller; Helena Ryšlavá
Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) from mature maize seeds (Zea mays L.) was purified to homogeneity and a final specific activity of 13.3 μmol min⁻¹ mg⁻¹. Purified PEPC was treated with phosphatase from bovine intestinal mucosa or protein kinase A to study its apparent phosphorylation level. Kinetic parameters of the enzyme reaction catalyzed by phosphorylated and dephosphorylated forms under different conditions were compared, as well as an effect of modulators. The enzyme dephosphorylation resulted in the change of hyperbolic kinetics to the sigmoidal one (with respect to PEP), following with the decrease of maximal reaction rate and the increase of sensitivity to L-malate inhibition. The hyperbolic kinetics of native PEPC present in dry maize seeds was not changed after the protein kinase A treatment, while it was converted to the sigmoidal one after dephosphorylation. Level of PEPC phosphorylation was not affected during seed imbibition.
International Journal of Molecular Sciences | 2009
Veronika Doubnerová; Karel Müller; Noemi Čeřovská; Helena Synková; Petra Spoustová; Helena Ryšlavá
The effect of biotic stress induced by viral infection (Potato virus Y, strain NTN and O) on NADP-malic enzyme (EC 1.1.1.40) in tobacco plants (Nicotiana tabacum L., cv. Petit Havana, SR1) was tested at the transcriptional, translational and activity level. The increase of enzyme activity in infected leaves was correlated with the increased amount of expressed protein and with mRNA of cytosolic NADP-ME isoform. Transcription of the chloroplastic enzyme was not influenced by viral infection. The increase of the enzyme activity was also detected in stems and roots of infected plants. The effect of viral infection induced by Potato virus Y, NTN strain, causing more severe symptoms, was compared with the effect induced by milder strain PVYO. The observed increase in NADP-malic enzyme activity in all parts of the studied plants was higher in the case of PVYNTN strain than in the case of strain PVYO. The relevance of NADP-malic enzyme in plants under stress conditions was discussed.
Electrophoresis | 2011
Tomáš Dráb; Jana Kračmerová; Ivana Tichá; Eva Hanzlíková; Marie Tichá; Helena Ryšlavá; Veronika Doubnerová; Pavla Maňásková-Postlerová; Jiří Liberda
A new type of native electrophoresis was developed to separate and characterize proteins. In this modification of the native blue electrophoresis, the dye Ponceau Red S is used instead of Coomassie Brilliant Blue to impose uniform negative charge on proteins to enable their electrophoretic separation according to their relative molecular masses. As Ponceau Red S binds less tightly to proteins, in comparison with Coomassie Blue, it can be easily removed after the electrophoretic separation and a further investigation of protein properties is made possible (e.g. an enzyme detection or electroblotting). The tested proteins also kept their native properties (enzyme activity or aggregation state).
Analytical and Bioanalytical Chemistry | 2013
Tomáš Křížek; Veronika Doubnerová; Helena Ryšlavá; Pavel Coufal; Zuzana Bosáková
Collection of Czechoslovak Chemical Communications | 2007
Helena Ryšlavá; Veronika Doubnerová; Karel Müller; Petra Baťková; Renáta Schnablová; Jiří Liberda; Helena Synková; Noemi Čeřovská
Journal of The Serbian Chemical Society | 2009
Veronika Doubnerová; Lucie Potůcková; Karel Müller; Helena Ryšlavá