Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Veronika M. Cottontail is active.

Publication


Featured researches published by Veronika M. Cottontail.


Nature Communications | 2012

Bats host major mammalian paramyxoviruses

Drexler Jf; Victor Max Corman; Marcel A. Müller; Gaël D. Maganga; Peter Vallo; Tabea Binger; Florian Gloza-Rausch; Veronika M. Cottontail; Andrea Rasche; Stoian Yordanov; Antje Seebens; Mirjam Knörnschild; Samuel Oppong; Adu Sarkodie Y; Pongombo C; Alexander N. Lukashev; Jonas Schmidt-Chanasit; Andreas Stöcker; Aroldo José Borges Carneiro; Stephanie Erbar; Andrea Maisner; Florian Fronhoffs; Reinhard Buettner; Elisabeth K. V. Kalko; Thomas Kruppa; Carlos Roberto Franke; René Kallies; Yandoko Er; Georg Herrler; Chantal Reusken

The large virus family Paramyxoviridae includes some of the most significant human and livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-, respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals). Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations suggests a predominance of host switches from bats to other mammals and birds. Hypothesis tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative hosts at ancestral nodes to both the major Paramyxoviridae subfamilies (Paramyxovirinae and Pneumovirinae). Future attempts to predict the emergence of novel paramyxoviruses in humans and livestock will have to rely fundamentally on these data. Supplementary information The online version of this article (doi:10.1038/ncomms1796) contains supplementary material, which is available to authorized users.


Journal of Virology | 2012

Bats Worldwide Carry Hepatitis E Virus-Related Viruses That Form a Putative Novel Genus within the Family Hepeviridae

Jan Felix Drexler; Annika Seelen; Victor Max Corman; Adriana Fumie Tateno; Veronika M. Cottontail; Rodrigo Melim Zerbinati; Florian Gloza-Rausch; Stefan M. Klose; Yaw Adu-Sarkodie; Samuel Oppong; Elisabeth K. V. Kalko; Andreas Osterman; Andrea Rasche; Alexander C. Adam; Marcel A. Müller; Rainer G. Ulrich; Eric Leroy; Alexander N. Lukashev; Christian Drosten

ABSTRACT Hepatitis E virus (HEV) is one of the most common causes of acute hepatitis in tropical and temperate climates. Tropical genotypes 1 and 2 are associated with food-borne and waterborne transmission. Zoonotic reservoirs (mainly pigs, wild boar, and deer) are considered for genotypes 3 and 4, which exist in temperate climates. In view of the association of several zoonotic viruses with bats, we analyzed 3,869 bat specimens from 85 different species and from five continents for hepevirus RNA. HEVs were detected in African, Central American, and European bats, forming a novel phylogenetic clade in the family Hepeviridae. Bat hepeviruses were highly diversified and comparable to human HEV in sequence variation. No evidence for the transmission of bat hepeviruses to humans was found in over 90,000 human blood donations and individual patient sera. Full-genome analysis of one representative virus confirmed formal classification within the family Hepeviridae. Sequence- and distance-based taxonomic evaluations suggested that bat hepeviruses constitute a distinct genus within the family Hepeviridae and that at least three other genera comprising human, rodent, and avian hepeviruses can be designated. This may imply that hepeviruses invaded mammalian hosts nonrecently and underwent speciation according to their host restrictions. Human HEV-related viruses in farmed and peridomestic animals might represent secondary acquisitions of human viruses, rather than animal precursors causally involved in the evolution of human HEV.


PLOS Pathogens | 2013

Evidence for novel hepaciviruses in rodents.

Jan Felix Drexler; Victor Max Corman; Marcel A. Müller; Alexander N. Lukashev; Anatoly P. Gmyl; Bruno Coutard; Alexander C. Adam; Daniel Ritz; Lonneke M. Leijten; Debby van Riel; René Kallies; Stefan M. Klose; Florian Gloza-Rausch; Tabea Binger; Augustina Annan; Yaw Adu-Sarkodie; Samuel Oppong; Mathieu Bourgarel; Daniel Rupp; Bernd Hoffmann; Mathias Schlegel; Beate M. Kümmerer; Detlev H. Krüger; Jonas Schmidt-Chanasit; Alvaro Aguilar Setién; Veronika M. Cottontail; Thiravat Hemachudha; Supaporn Wacharapluesadee; Klaus Osterrieder; Ralf Bartenschlager

Hepatitis C virus (HCV) is among the most relevant causes of liver cirrhosis and hepatocellular carcinoma. Research is complicated by a lack of accessible small animal models. The systematic investigation of viruses of small mammals could guide efforts to establish such models, while providing insight into viral evolutionary biology. We have assembled the so-far largest collection of small-mammal samples from around the world, qualified to be screened for bloodborne viruses, including sera and organs from 4,770 rodents (41 species); and sera from 2,939 bats (51 species). Three highly divergent rodent hepacivirus clades were detected in 27 (1.8%) of 1,465 European bank voles (Myodes glareolus) and 10 (1.9%) of 518 South African four-striped mice (Rhabdomys pumilio). Bats showed anti-HCV immunoblot reactivities but no virus detection, although the genetic relatedness suggested by the serologic results should have enabled RNA detection using the broadly reactive PCR assays developed for this study. 210 horses and 858 cats and dogs were tested, yielding further horse-associated hepaciviruses but none in dogs or cats. The rodent viruses were equidistant to HCV, exceeding by far the diversity of HCV and the canine/equine hepaciviruses taken together. Five full genomes were sequenced, representing all viral lineages. Salient genome features and distance criteria supported classification of all viruses as hepaciviruses. Quantitative RT-PCR, RNA in-situ hybridisation, and histopathology suggested hepatic tropism with liver inflammation resembling hepatitis C. Recombinant serology for two distinct hepacivirus lineages in 97 bank voles identified seroprevalence rates of 8.3 and 12.4%, respectively. Antibodies in bank vole sera neither cross-reacted with HCV, nor the heterologous bank vole hepacivirus. Co-occurrence of RNA and antibodies was found in 3 of 57 PCR-positive bank vole sera (5.3%). Our data enable new hypotheses regarding HCV evolution and encourage efforts to develop rodent surrogate models for HCV.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Bats carry pathogenic hepadnaviruses antigenically related to hepatitis B virus and capable of infecting human hepatocytes

Jan Felix Drexler; Andreas Geipel; Alexander König; Victor Max Corman; Debby van Riel; Lonneke M. Leijten; Corinna M. Bremer; Andrea Rasche; Veronika M. Cottontail; Gaël D. Maganga; Mathias Schlegel; Marcel A. Müller; Alexander C. Adam; Stefan M. Klose; Aroldo José Borges Carneiro; Andreas Stöcker; Carlos Roberto Franke; Florian Gloza-Rausch; Joachim Geyer; Augustina Annan; Yaw Adu-Sarkodie; Samuel Oppong; Tabea Binger; Peter Vallo; Marco Tschapka; Rainer G. Ulrich; Wolfram H. Gerlich; Eric M. Leroy; Thijs Kuiken; Dieter Glebe

Significance Hepatitis B virus (HBV) is the prototype hepadnavirus; 40% of humans have current or past infection. In a global investigation of viral diversity in bats, we discovered three unique hepadnavirus species. The relatedness of these viruses to HBV suggests that bats might constitute ancestral sources of primate hepadnaviruses. Infection patterns in bats resembled human infection with HBV. After resurrection from bat tissues, pseudotyped viruses carrying surface proteins of one bat hepadnavirus could infect human liver cells. HBV vaccination is probably not protective against these viruses, but viral replication could be blocked by a reverse transcriptase inhibitor used as an anti-HBV drug in humans. The potential of bat hepadnaviruses to infect humans should be considered in programs aimed at eradicating HBV. The hepatitis B virus (HBV), family Hepadnaviridae, is one of most relevant human pathogens. HBV origins are enigmatic, and no zoonotic reservoirs are known. Here, we screened 3,080 specimens from 54 bat species representing 11 bat families for hepadnaviral DNA. Ten specimens (0.3%) from Panama and Gabon yielded unique hepadnaviruses in coancestral relation to HBV. Full genome sequencing allowed classification as three putative orthohepadnavirus species based on genome lengths (3,149–3,377 nt), presence of middle HBV surface and X-protein genes, and sequence distance criteria. Hepatic tropism in bats was shown by quantitative PCR and in situ hybridization. Infected livers showed histopathologic changes compatible with hepatitis. Human hepatocytes transfected with all three bat viruses cross-reacted with sera against the HBV core protein, concordant with the phylogenetic relatedness of these hepadnaviruses and HBV. One virus from Uroderma bilobatum, the tent-making bat, cross-reacted with monoclonal antibodies against the HBV antigenicity determining S domain. Up to 18.4% of bat sera contained antibodies against bat hepadnaviruses. Infectious clones were generated to study all three viruses in detail. Hepatitis D virus particles pseudotyped with surface proteins of U. bilobatum HBV, but neither of the other two viruses could infect primary human and Tupaia belangeri hepatocytes. Hepatocyte infection occurred through the human HBV receptor sodium taurocholate cotransporting polypeptide but could not be neutralized by sera from vaccinated humans. Antihepadnaviral treatment using an approved reverse transcriptase inhibitor blocked replication of all bat hepadnaviruses. Our data suggest that bats may have been ancestral sources of primate hepadnaviruses. The observed zoonotic potential might affect concepts aimed at eradicating HBV.


Infection, Genetics and Evolution | 2012

TcBat a bat-exclusive lineage of Trypanosoma cruzi in the Panama Canal Zone, with comments on its classification and the use of the 18S rRNA gene for lineage identification.

C. Miguel Pinto; Elisabeth K. V. Kalko; Iain Cottontail; Nele Wellinghausen; Veronika M. Cottontail

We report TcBat, a recently described genetic lineage of Trypanosoma cruzi, in fruit-eating bats Artibeus from Panama. Infections were common (11.6% prevalence), but no other T. cruzi cruzi genotypes were detected. Phylogenetic analyses show an unambiguous association with Brazilian TcBat, but raise questions about the phylogenetic placement of this genotype using the 18S rRNA gene alone. However, analyses with three concatenated genes (18S rRNA, cytb, and H2B) moderately support TcBat as sister to the discrete typing unit (DTU) TcI. We demonstrate that short fragments (>500 bp) of the 18S rRNA gene are useful for identification of DTUs of T. cruzi, and provide reliable phylogenetic signal as long as they are analyzed within a matrix with reference taxa containing additional informative genes. TcBat forms a very distinctive monophyletic group that may be recognized as an additional DTU within T. cruzi cruzi.


PLOS ONE | 2011

Two Novel Parvoviruses in Frugivorous New and Old World Bats

Marta Canuti; Anna Maria Eis-Huebinger; Martin Deijs; Michel de Vries; Jan Felix Drexler; Samuel Oppong; Marcel A. Müller; Stefan M. Klose; Nele Wellinghausen; Veronika M. Cottontail; Elisabeth K. V. Kalko; Christian Drosten; Lia van der Hoek

Bats, a globally distributed group of mammals with high ecological importance, are increasingly recognized as natural reservoir hosts for viral agents of significance to human and animal health. In the present study, we evaluated pools of blood samples obtained from two phylogenetically distant bat families, in particular from flying foxes (Pteropodidae), Eidolon helvum in West Africa, and from two species of New World leaf-nosed fruit bats (Phyllostomidae), Artibeus jamaicensis and Artibeus lituratus in Central America. A sequence-independent virus discovery technique (VIDISCA) was used in combination with high throughput sequencing to detect two novel parvoviruses: a PARV4-like virus named Eh-BtPV-1 in Eidolon helvum from Ghana and the first member of a putative new genus in Artibeus jamaicensis from Panama (Aj-BtPV-1). Those viruses were circulating in the corresponding bat colony at rates of 7–8%. Aj-BtPV-1 was also found in Artibeus lituratus (5.5%). Both viruses were detected in the blood of infected animals at high concentrations: up to 10E8 and to 10E10 copies/ml for Aj-BtPV-1 and Eh-BtPV-1 respectively. Eh-BtPV-1 was additionally detected in all organs collected from bats (brain, lungs, liver, spleen, kidneys and intestine) and spleen and kidneys were identified as the most likely sites where viral replication takes place. Our study shows that bat parvoviruses share common ancestors with known parvoviruses of humans and livestock. We also provide evidence that a variety of Parvovirinae are able to cause active infection in bats and that they are widely distributed in these animals with different geographic origin, ecologies and climatic ranges.


Parasitology | 2009

Habitat fragmentation and haemoparasites in the common fruit bat, Artibeus jamaicensis (Phyllostomidae) in a tropical lowland forest in Panamá.

Veronika M. Cottontail; Nele Wellinghausen; Elisabeth K. V. Kalko

Anthropogenic influence on ecosystems, such as habitat fragmentation, impacts species diversity and interactions. There is growing evidence that degradation of habitats favours disease and hence affects ecosystem health. The prevalence of haemoparasites in the Common Fruit Bat (Artibeus jamaicensis) in a tropical lowland forest in Panamá was studied. We assessed the relation of haemoparasite to the general condition of the animals and tested for possible association of haemoparasite prevalence to habitat fragmentation, with special focus on trypanosomes. Overall, a total of 250 A. jamaicensis sampled from fragmented sites, here man-made, forested islands in Lake Gatùn, and sites in the adjacent, continuous forest in and around the Barro Colorado Nature Monument were examined. Using microscopy and DNA-sequencing 2 dominant types of haemoparasite infections, trypanosomes and Litomosoides (Nematoda) were identified. Trypanosome prevalence was significantly higher in bats from forest fragments, than in bats captured in continuous forest. We attribute this to the loss of species richness in forest fragments and specific characteristics of the fragments favouring trypanosome transmission, in particular changes in vegetation cover. Interestingly, the effect of habitat fragmentation on the prevalence of trypanosomes as multi-host parasites could not be observed in Litomosoides which probably has a higher host specificity and might be affected less by overall diversity loss.


Molecular Phylogenetics and Evolution | 2016

Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach

Janus Borner; Christian Pick; Jenny Thiede; Olatunji Matthew Kolawole; Manchang Tanyi Kingsley; Jana Schulze; Veronika M. Cottontail; Nele Wellinghausen; Jonas Schmidt-Chanasit; Iris Bruchhaus; Thorsten Burmester

The apicomplexan order Haemosporida is a clade of unicellular blood parasites that infect a variety of reptilian, avian and mammalian hosts. Among them are the agents of human malaria, parasites of the genus Plasmodium, which pose a major threat to human health. Illuminating the evolutionary history of Haemosporida may help us in understanding their enormous biological diversity, as well as tracing the multiple host switches and associated acquisitions of novel life-history traits. However, the deep-level phylogenetic relationships among major haemosporidian clades have remained enigmatic because the datasets employed in phylogenetic analyses were severely limited in either gene coverage or taxon sampling. Using a PCR-based approach that employs a novel set of primers, we sequenced fragments of 21 nuclear genes from seven haemosporidian parasites of the genera Leucocytozoon, Haemoproteus, Parahaemoproteus, Polychromophilus and Plasmodium. After addition of genomic data from 25 apicomplexan species, the unreduced alignment comprised 20,580 bp from 32 species. Phylogenetic analyses were performed based on nucleotide, codon and amino acid data employing Bayesian inference, maximum likelihood and maximum parsimony. All analyses resulted in highly congruent topologies. We found consistent support for a basal position of Leucocytozoon within Haemosporida. In contrast to all previous studies, we recovered a sister group relationship between the genera Polychromophilus and Plasmodium. Within Plasmodium, the sauropsid and mammal-infecting lineages were recovered as sister clades. Support for these relationships was high in nearly all trees, revealing a novel phylogeny of Haemosporida, which is robust to the choice of the outgroup and the method of tree inference.


PLOS ONE | 2014

High Local Diversity of Trypanosoma in a Common Bat Species, and Implications for the Biogeography and Taxonomy of the T. cruzi Clade

Veronika M. Cottontail; Elisabeth K. V. Kalko; Iain Cottontail; Nele Wellinghausen; Marco Tschapka; Susan L. Perkins; C. Miguel Pinto

The Trypanosoma cruzi clade is a group of parasites that comprises T. cruzi sensu lato and its closest relatives. Although several species have been confirmed phylogenetically to belong to this clade, it is uncertain how many more species can be expected to belong into this group. Here, we present the results of a survey of trypanosome parasites of the bat Artibeus jamaicensis from the Panamá Canal Zone, an important seed disperser. Using a genealogical species delimitation approach, the Poisson tree processes (PTP), we tentatively identified five species of trypanosomes – all belonging to the T. cruzi clade. A small monophyletic group of three putative Trypanosoma species places at the base of the clade phylogeny, providing evidence for at least five independent colonization events of these parasites into the New World. Artibeus jamaicensis presents a high diversity of these blood parasites and is the vertebrate with the highest number of putative trypanosome species reported from a single locality. Our results emphasize the need for continued efforts to survey mammalian trypanosomes.


Journal of General Virology | 2013

Highly diversified coronaviruses in neotropical bats

Victor Max Corman; Andrea Rasche; Thierno Diawo Diallo; Veronika M. Cottontail; Andreas Stöcker; Breno Frederico de Carvalho Dominguez Souza; Jefferson Ivan Corrêa; Aroldo José Borges Carneiro; Carlos Roberto Franke; Martina Nagy; Markus Metz; Mirjam Knörnschild; Elisabeth K. V. Kalko; Simon J. Ghanem; Karen D. Sibaja Morales; Egoitz Salsamendi; Manuel Spínola; Georg Herrler; Christian C. Voigt; Marco Tschapka; Christian Drosten; Jan Felix Drexler

Bats host a broad diversity of coronaviruses (CoVs), including close relatives of human pathogens. There is only limited data on neotropical bat CoVs. We analysed faecal, blood and intestine specimens from 1562 bats sampled in Costa Rica, Panama, Ecuador and Brazil for CoVs by broad-range PCR. CoV RNA was detected in 50 bats representing nine different species, both frugivorous and insectivorous. These bat CoVs were unrelated to known human or animal pathogens, indicating an absence of recent zoonotic spill-over events. Based on RNA-dependent RNA polymerase (RdRp)-based grouping units (RGUs) as a surrogate for CoV species identification, the 50 viruses represented five different alphacoronavirus RGUs and two betacoronavirus RGUs. Closely related alphacoronaviruses were detected in Carollia perspicillata and C. brevicauda across a geographical distance exceeding 5600 km. Our study expands the knowledge on CoV diversity in neotropical bats and emphasizes the association of distinct CoVs and bat host genera.

Collaboration


Dive into the Veronika M. Cottontail's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Felix Drexler

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Samuel Oppong

Kwame Nkrumah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge