Veronika M. Stein
University of Bern
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Veronika M. Stein.
BMC Veterinary Research | 2015
Mette Berendt; Robyn Farquhar; P.J.J. Mandigers; Akos Pakozdy; Sofie Bhatti; Luisa De Risio; Andrea Fischer; Sam Long; Kaspar Matiasek; Karen R. Muñana; Edward E. Patterson; Jacques Penderis; Simon R. Platt; Michael Podell; Heidrun Potschka; M. Pumarola; Clare Rusbridge; Veronika M. Stein; Andrea Tipold; Holger A. Volk
Dogs with epilepsy are among the commonest neurological patients in veterinary practice and therefore have historically attracted much attention with regard to definitions, clinical approach and management. A number of classification proposals for canine epilepsy have been published during the years reflecting always in parts the current proposals coming from the human epilepsy organisation the International League Against Epilepsy (ILAE). It has however not been possible to gain agreed consensus, “a common language”, for the classification and terminology used between veterinary and human neurologists and neuroscientists, practitioners, neuropharmacologists and neuropathologists. This has led to an unfortunate situation where different veterinary publications and textbook chapters on epilepsy merely reflect individual author preferences with respect to terminology, which can be confusing to the readers and influence the definition and diagnosis of epilepsy in first line practice and research studies.In this document the International Veterinary Epilepsy Task Force (IVETF) discusses current understanding of canine epilepsy and presents our 2015 proposal for terminology and classification of epilepsy and epileptic seizures. We propose a classification system which reflects new thoughts from the human ILAE but also roots in former well accepted terminology. We think that this classification system can be used by all stakeholders.
Journal of Neuropathology and Experimental Neurology | 2011
Ingo Spitzbarth; Patricia Bock; Verena Haist; Veronika M. Stein; Andrea Tipold; Konstantin Wewetzer; Wolfgang Baumgärtner; Andreas Beineke
Better understanding of the pathogenesis of spinal cord injury (SCI) is needed for the development of new therapeutic strategies. Spinal cord injury has been investigated in various rodent models, but extrapolation to humans requires the use of a large animal model that more closely mimics human SCI. Dogs frequently develop spontaneous SCI with features that bear a striking resemblance to the human counterpart. We investigated the temporal course of the immuneresponse during naturally occurring canine SCI and in organotypic canine spinal cord slice cultures that are devoid of peripheral immune cells. By immunohistochemistry, the inflammatory response in subacute canine SCI was largely restricted to resident immune cells as demonstrated by activation of major histocompatibility complex class II-expressing microglia/macrophages. By quantitative polymerase chain reaction, there was parallel upregulation of proinflammatorycytokine gene expression (i.e. of interleukin 6 [IL-6] and IL-8 witha trend toward upregulation of tumor necrosis factor) in acute canine SCI. Expression of neuroprotective cytokines (e.g. IL-10) remained unchanged, and transforming growth factor &bgr; upregulationwas delayed. In organotypic spinal cord slices, there was similar activation of major histocompatibility complex class II-positive microglia and prolonged upregulation of inflammatory cytokines, indicating that resident rather than infiltrating cells play major roles in the postinjury immune response. Thus, canine SCI represents a bridge between rodent models and human SCI that may be relevant for clinical and preclinical treatment studies.
Journal of Veterinary Internal Medicine | 2013
Nick D. Jeffery; Jonathan M. Levine; Natasha J. Olby; Veronika M. Stein
Evidence of intervertebral disk degeneration (IVDD) is extremely common in dogs, and its prevalence increases with age. It has many important consequences because degeneration of the intervertebral disks often is a prelude to disk herniation, which can injure the spinal cord, spinal nerves, or both. This review summarizes the advances in diagnosis and treatment of IVDD that have been made since the 1950s when the first detailed description of the degenerative changes was published. It also discusses new approaches to treatment of the associated spinal cord injury and new methods by which to classify injury severity that are currently under development.
Aging Cell | 2008
Anton Pekcec; Wolfgang Baumgärtner; Jens P. Bankstahl; Veronika M. Stein; Heidrun Potschka
An age‐dependent decline in hippocampal neurogenesis has been reported in laboratory rodents. Environmental enrichment proved to be a strong trigger of neurogenesis in young and aged laboratory rodents, which are generally kept in facilities with a paucity of environmental stimuli. These data raise the question whether an age‐dependent decline in hippocampal cell proliferation and neurogenesis can also be observed in individuals exposed to diversified and varying surroundings. Therefore, we determined rates of canine hippocampal neurogenesis using post‐mortem tissue from 37 nonlaboratory dogs that were exposed to a variety of environmental conditions throughout their life. Expression of the neuronal progenitor cell marker doublecortin clearly correlated with age. The analysis of doublecortin‐labeled cells in dogs aged > 133 months indicated a 96% drop in the aged canine brain as compared to young adults. Expression of the proliferation marker Ki‐67 in the subgranular zone decreased until dogs were aged 85–132 months. In the aging canine brain amyloid‐beta peptide deposits have been described that might resemble an early pathophysiological change in the course of human Alzheimers disease. Comparison of Ki‐67 and doublecortin expression in canine brain tissue with or without diffuse plaques revealed no differences. The data indicate that occurrence of diffuse plaques in the aging brain is not sufficient to trigger enhanced proliferation or enhanced neurogenesis such as described in human Alzheimers disease. In addition, this study gives first proof that an age‐dependent decline also dominates hippocampal neurogenesis rates in individuals living in diversified environments.
Journal of Neuroimmunology | 2004
Veronika M. Stein; Markus Czub; Nicole Schreiner; Peter F. Moore; Marc Vandevelde; Andreas Zurbriggen; Andrea Tipold
Microglia cells are the principal immune effector elements of the brain responding to any pathological event. To elucidate the possible role of microglia in initial non-inflammatory demyelination in canine distemper virus (CDV) infection, microglia from experimentally CDV infected dogs were isolated ex vivo by density gradient centrifugation and characterized immunophenotypically and functionally using flow cytometry. Results from dogs with demyelinating lesions were compared to results from recovered dogs and two healthy controls. CDV antigen could be detected in microglia of dogs with histopathologically confirmed demyelination. Microglia of these dogs showed marked upregulation of the surface molecules CD18, CD11b, CD11c, CD1c, MHC class I and MHC class II and a tendency for increased expression intensity of ICAM-1 (CD54), B7-1 (CD80), B7-2 (CD86), whereas no increased expression was found for CD44 and CD45. Functionally, microglia exhibited distinctly enhanced phagocytosis and generation of reactive oxygen species (ROS). It was concluded that in CDV infection, there is a clear association between microglial activation and demyelination. This strongly suggests that microglia contribute to acute myelin destruction in distemper.
PLOS ONE | 2011
Ute Philipp; Bettina Lupp; Stefanie Mömke; Veronika M. Stein; Andrea Tipold; Johanna Corinna Eule; J. Rehage; Ottmar Distl
A dominantly inherited syndrome associated with hypopigmentation, heterochromia irides, colobomatous eyes and bilateral hearing loss has been ascertained in Fleckvieh cattle (German White Fleckvieh syndrome). This syndrome has been mapped to bovine chromosome (BTA) 22 using a genome-wide association study with the bovine high density single nucleotide polymorphism array. An R210I missense mutation has been identified within microphthalmia-associated transcription factor (MITF) as responsible for this syndrome. The mutation is located in the highly conserved basic region of the protein and causes a negative-dominant effect. SOX10 and PAX3 promoter binding site mutations in MITF could be ruled out as causative for the German White Fleckvieh syndrome. Molecular characterization of this newly detected bovine syndrome means a large animal model is now available for the Tietz syndrome in humans.
Brain Pathology | 2013
Patricia Bock; Ingo Spitzbarth; Verena Haist; Veronika M. Stein; Andrea Tipold; Christina Puff; Andreas Beineke; Wolfgang Baumgärtner
Spinal cord injury (SCI) represents a devastating central nervous system disease that still lacks sufficient therapies. Here, dogs are increasingly recognized as a preclinical animal model for the development of future therapies. The aim of this study was a detailed characterization of axonopathy in canine intervertebral disc disease, which produces a mixed contusive and compressive injury and functions as a spontaneous translational animal model for human SCI. The results revealed an early occurrence of ultrastructurally distinct axonal swelling. Immunohistochemically, enhanced axonal expression of β‐amyloid precursor protein, non‐phosphorylated neurofilament (n‐NF) and growth‐associated protein‐43 was detected in the epicenter during acute canine SCI. Indicative of a progressive axonopathy, these changes showed a cranial and caudally accentuated spatial progression in the subacute disease phase. In canine spinal cord slice cultures, immunoreactivity of axons was confined to n‐NF. Real‐time quantitative polymerase chain reaction of naturally traumatized tissue and slice cultures revealed a temporally distinct dysregulation of the matrix metalloproteinases (MMP)‐2 and MMP‐9 with a dominating expression of the latter. Contrasting to early axonopathy, diminished myelin basic protein immunoreactivity and phagocytosis were delayed. The results present a basis for assessing new therapies in the canine animal model for translational research that might allow partial extrapolation to human SCI.
BMC Veterinary Research | 2015
Sofie Bhatti; Luisa De Risio; Karen R. Muñana; Jacques Penderis; Veronika M. Stein; Andrea Tipold; Mette Berendt; Robyn Farquhar; Andrea Fischer; Sam Long; Wolfgang Löscher; P.J.J. Mandigers; Kaspar Matiasek; Akos Pakozdy; Edward E. Patterson; Simon R. Platt; Michael Podell; Heidrun Potschka; Clare Rusbridge; Holger A. Volk
In Europe, the number of antiepileptic drugs (AEDs) licensed for dogs has grown considerably over the last years. Nevertheless, the same questions remain, which include, 1) when to start treatment, 2) which drug is best used initially, 3) which adjunctive AED can be advised if treatment with the initial drug is unsatisfactory, and 4) when treatment changes should be considered. In this consensus proposal, an overview is given on the aim of AED treatment, when to start long-term treatment in canine epilepsy and which veterinary AEDs are currently in use for dogs. The consensus proposal for drug treatment protocols, 1) is based on current published evidence-based literature, 2) considers the current legal framework of the cascade regulation for the prescription of veterinary drugs in Europe, and 3) reflects the authors’ experience. With this paper it is aimed to provide a consensus for the management of canine idiopathic epilepsy. Furthermore, for the management of structural epilepsy AEDs are inevitable in addition to treating the underlying cause, if possible.
Journal of Neurotrauma | 2012
Theda Marie Anne Boekhoff; Eva-Maria Ensinger; Regina Carlson; Patricia Bock; Wolfgang Baumgärtner; Karl Rohn; Andrea Tipold; Veronika M. Stein
Spinal cord injury (SCI) in dogs is a well recognized animal model to study pathogenesis and treatment modalities of the debilitating human disease. To define the contributing role of microglial cell activation to the secondary wave following SCI, microglia from 15 dogs with SCI confirmed by imaging, gross, and histopathological examination were isolated and characterized in terms of morphology, immunophenotype, and function ex vivo by flow cytometry, allowing single cell analysis. The results were compared to region-specific findings obtained from healthy control dogs. Light microscopy revealed a significant enhancement of myelinophagia within the traumatized spinal cord of dogs who had had SCI for ≥5 days. Immunophenotypical characterization revealed increased expression of B7-1, B7-2, MHC II, CD1c, ICAM 1, CD14, CD44, and CD45 emphasizing the enhanced function of microglia as co-stimulators of T cells, in leukocyte adhesion and aggregation, and for lipid or glycolipid presentation. In addition, phagocytosis and reactive oxygen species (ROS) generation were significantly increased in dogs with spinal cord trauma. Regional differences within the spinal cord were observed by demonstrating disparities in microglial immunophenotypes in the traumatized cervical compared to the thoracolumbar spinal cord. In contrast to histopathology, microglia activation analyzed on a single cell basis did not depend upon the time span following SCI.
Journal of Neuroscience Methods | 2010
Ruth Schmitte; Andrea Tipold; Veronika M. Stein; Henning C. Schenk; Cornelia Flieshardt; Claudia Grothe; Kirsten Haastert
After peripheral nerve injury, Schwann cells (SC) guarantee for a regeneration-promoting milieu and are crucially involved in axonal regeneration. For extended nerve defects, bridging with an autologous nerve transplant is the gold standard therapy. Artificial biohybrid nerve transplants which combine a synthetic conduit with autologous SC genetically modified to express regeneration-promoting proteins may provide an alternative therapy to autotransplantation. The dog seems to be an ideal translational animal model for new treatment strategies. In the present study, utilizing a new transfection protocol, we transplanted enhanced green fluorescent protein (EGFP)-expressing adult canine SC (cSC) into a 5mm epineural pouch in the sciatic nerve of adult rats (n=9). The epineurial pouch technique serves as proof of principle to follow the fate of the transplanted cSC for up to 14 days after surgery. Fluorescence microscopy and immunohistochemistry revealed survival and integration of EGFP-expressing cSC into the regenerating host nerve tissue. We demonstrate that transplanted cSC contribute to the formation of bands of Büngner and are located in close vicinity to growth-associated protein-43 (GAP-43) expressing regenerating nerve fibers. This provides first evidence that transplanted genetically modified Schwann cells do successfully integrate into the host tissue where they could actively contribute to the regeneration process.