Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Veronika Obsilova is active.

Publication


Featured researches published by Veronika Obsilova.


Oncogene | 2008

Structure/function relationships underlying regulation of FOXO transcription factors

Tomas Obsil; Veronika Obsilova

The FOXO subgroup of forkhead transcription factors plays a central role in cell-cycle control, differentiation, metabolism control, stress response and apoptosis. Therefore, the function of these important molecules is tightly controlled by a wide range of protein–protein interactions and posttranslational modifications including phosphorylation, acetylation and ubiquitination. The mechanisms by which these processes regulate FOXO activity are mostly elusive. This review focuses on recent advances in structural studies of forkhead transcription factors and the insights they provide into the mechanism of DNA recognition. On the basis of these data, we discuss structural aspects of protein–protein interactions and posttranslational modifications that target the forkhead domain and the nuclear localization signal of FOXO proteins.


Seminars in Cell & Developmental Biology | 2011

Structural basis of 14-3-3 protein functions.

Tomas Obsil; Veronika Obsilova

The 14-3-3 proteins, a family of conserved regulatory molecules, participate in a wide range of cellular processes through binding interactions with hundreds of structurally and functionally diverse proteins. Several distinct mechanisms of the 14-3-3 protein function were described, including conformational modulation of the bound protein, masking of its sequence-specific or structural features, and scaffolding that facilitates interaction between two simultaneously bound proteins. Details of these functional modes, especially from the structural point of view, still remain mostly elusive. This review gives an overview of the current knowledge concerning the structure of 14-3-3 proteins and their complexes as well as the insights it provides into the mechanisms of their functions. We discuss structural basis of target recognition by 14-3-3 proteins, common structural features of their complexes and known mechanisms of 14-3-3 protein-dependent regulations.


Journal of Biological Chemistry | 2007

Both the N-terminal Loop and Wing W2 of the Forkhead Domain of Transcription Factor Foxo4 Are Important for DNA Binding

Evzen Boura; Jan Silhan; Petr Herman; Jaroslav Vecer; M. Sulc; Jan Teisinger; Veronika Obsilova; Tomas Obsil

FoxO4 belongs to the “O” subset of forkhead transcription factors, which participate in various cellular processes. The forkhead DNA binding domain (DBD) consists of three-helix bundle resting on a small antiparallel β-sheet from which two extended loops protrude and create two wing-like structures. The wing W2 of FoxO factors contains a 14-3-3 protein-binding motif that is phosphorylated by protein kinase B in response to insulin or growth factors. In this report, we investigated the role of the N-terminal loop (portion located upstream of first helix H1) and the C-terminal region (loop known as wing W2) of the forkhead domain of transcription factor FoxO4 in DNA binding. Although the deletion of either portion partly reduces the FoxO4-DBD binding to the DNA, the simultaneous deletion of both regions inhibits DNA binding significantly. Förster resonance energy transfer measurements and molecular dynamics simulations suggest that both studied N- and C-terminal regions of FoxO4-DBD directly interact with DNA. In the presence of the N-terminal loop the protein kinase B-induced phosphorylation of wing W2 by itself has negligible effect on DNA binding. On the other hand, in the absence of this loop the phosphorylation of wing W2 significantly inhibits the FoxO4-DBD binding to the DNA. The binding of the 14-3-3 protein efficiently reduces DNA-binding potential of phosphorylated FoxO4-DBD regardless of the presence of the N-terminal loop. Our results show that both N- and C-terminal regions of forkhead domain are important for stability of the FoxO4-DBD·DNA complex.


Biochimica et Biophysica Acta | 2011

Structural basis for DNA recognition by FOXO proteins.

Tomas Obsil; Veronika Obsilova

The FOXO forkhead transcription factors are involved in metabolism control, cell survival, cellular proliferation, DNA damage repair response, and stress resistance. Their transcriptional activity is regulated through a number of posttranslational modifications, including phosphorylation, acetylation and ubiquitination. The recently determined three-dimensional structures of FOXO forkhead domains bound to DNA enable to explain the structural basis for DNA recognition by FOXO proteins and its regulation. The aim of this review is to summarize the recent structural characterization of FOXO proteins, the mechanisms of DNA recognition and the role of posttranslational modifications in the regulation of FOXO DNA-binding properties. This article is part of a Special Issue entitled: PI3K-AKT-FOXO axis in cancer and aging.


Biochemistry | 2008

The 14-3-3 Protein Affects the Conformation of the Regulatory Domain of Human Tyrosine Hydroxylase†

Veronika Obsilova; Eliska Nedbalkova; Jan Silhan; Evzen Boura; Petr Herman; Jaroslav Vecer; M. Sulc; Jan Teisinger; and Fred Dyda; Tomas Obsil

Tyrosine hydroxylase (TH) catalyzes the first step in the biosynthesis of catecholamines. Regulation of TH enzyme activity is controlled through the posttranslational modification of its regulatory domain. The regulatory domain of TH can be phosphorylated at four serines (8, 19, 31, and 40) by a variety of protein kinases. Phosphorylation of Ser19 does not by itself increase TH activity but induces its binding to the 14-3-3 protein. That leads to the enhancement of TH activity with a still not fully understood mechanism. The main goal of this work was to investigate whether the 14-3-3 protein binding affects the conformation of the regulatory domain of human TH isoform 1 (TH1R). Site-directed mutagenesis was used to generate five single-tryptophan mutants of TH1R with the Trp residue located at five different positions within the domain (positions 14, 34, 73, 103, and 131). Time-resolved tryptophan fluorescence measurements revealed that phosphorylation of Ser19 and Ser40 does not itself induce any significant structural changes in regions surrounding inserted tryptophans. On the other hand, the interaction between the 14-3-3 protein and phosphorylated TH1R decreases the solvent exposure of tryptophan residues at positions 14 and 34 and induces distinct structural change in the vicinity of Trp73. The 14-3-3 protein binding also reduces the sensitivity of phosphorylated TH1R to proteolysis by protecting its N-terminal part (first 33 residues). Circular dichroism measurements showed that TH1R is an unstructured protein with a low content of secondary structure and that neither phosphorylation nor the 14-3-3 protein binding changes its secondary structure.


Journal of Biological Chemistry | 2009

14-3-3 Protein Masks the DNA Binding Interface of Forkhead Transcription Factor FOXO4

Jan Silhan; Pavla Strnadova; Jaroslav Vecer; Petr Herman; M. Sulc; Jan Teisinger; Veronika Obsilova; Tomas Obsil

The role of 14-3-3 proteins in the regulation of FOXO forkhead transcription factors is at least 2-fold. First, the 14-3-3 binding inhibits the interaction between the FOXO and the target DNA. Second, the 14-3-3 proteins prevent nuclear reimport of FOXO factors by masking their nuclear localization signal. The exact mechanisms of these processes are still unclear, mainly due to the lack of structural data. In this work, we used fluorescence spectroscopy to investigate the mechanism of the 14-3-3 protein-dependent inhibition of FOXO4 DNA-binding properties. Time-resolved fluorescence measurements revealed that the 14-3-3 binding affects fluorescence properties of 5-(((acetylamino)ethyl)amino) naphthalene-1-sulfonic acid moiety attached at four sites within the forkhead domain of FOXO4 that represent important parts of the DNA binding interface. Observed changes in 5-(((acetylamino)ethyl)amino) naphthalene-1-sulfonic acid fluorescence strongly suggest physical contacts between the 14-3-3 protein and labeled parts of the FOXO4 DNA binding interface. The 14-3-3 protein binding, however, does not cause any dramatic conformational change of FOXO4 as documented by the results of tryptophan fluorescence experiments. To build a realistic model of the FOXO4·14-3-3 complex, we measured six distances between 14-3-3 and FOXO4 using Förster resonance energy transfer time-resolved fluorescence experiments. The model of the complex suggests that the forkhead domain of FOXO4 is docked within the central channel of the 14-3-3 protein dimer, consistent with our hypothesis that 14-3-3 masks the DNA binding interface of FOXO4.


Journal of Structural Biology | 2010

14-3-3 protein interacts with and affects the structure of RGS domain of regulator of G protein signaling 3 (RGS3).

Lenka Rezabkova; Evzen Boura; Petr Herman; Jaroslav Vecer; Lenka Bourova; Miroslav Šulc; Petr Svoboda; Veronika Obsilova; Tomas Obsil

Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins (GAPs) for the alpha-subunit of heterotrimeric G proteins. Several RGS proteins have been found to interact with 14-3-3 proteins. The 14-3-3 protein binding inhibits the GAP function of RGS proteins presumably by blocking their interaction with G(alpha) subunit. Since RGS proteins interact with G(alpha) subunits through their RGS domains, it is reasonable to assume that the 14-3-3 protein can either sterically occlude the G(alpha) interaction surface of RGS domain and/or change its structure. In this work, we investigated whether the 14-3-3 protein binding affects the structure of RGS3 using the time-resolved tryptophan fluorescence spectroscopy. Two single-tryptophan mutants of RGS3 were used to study conformational changes of RGS3 molecule. Our measurements revealed that the 14-3-3 protein binding induces structural changes in both the N-terminal part and the C-terminal RGS domain of phosphorylated RGS3 molecule. Experiments with the isolated RGS domain of RGS3 suggest that this domain alone can, to some extent, interact with the 14-3-3 protein in a phosphorylation-independent manner. In addition, a crystal structure of the RGS domain of RGS3 was solved at 2.3A resolution. The data obtained from the resolution of the structure of the RGS domain suggest that the 14-3-3 protein-induced conformational change affects the region within the G(alpha)-interacting portion of the RGS domain. This can explain the inhibitory effect of the 14-3-3 protein on GAP activity of RGS3.


Biochemical Journal | 2012

Role of individual phosphorylation sites for the 14-3-3-protein-dependent activation of yeast neutral trehalase Nth1

Dana Veisova; Eva Macakova; Lenka Rezabkova; Miroslav Šulc; Hana Sychrova; Tomas Obsil; Veronika Obsilova

Trehalases are important highly conserved enzymes found in a wide variety of organisms and are responsible for the hydrolysis of trehalose that serves as a carbon and energy source as well as a universal stress protectant. Emerging evidence indicates that the enzymatic activity of the neutral trehalase Nth1 in yeast is enhanced by 14-3-3 protein binding in a phosphorylation-dependent manner through an unknown mechanism. In the present study, we investigated in detail the interaction between Saccharomyces cerevisiae Nth1 and 14-3-3 protein isoforms Bmh1 and Bmh2. We determined four residues that are phosphorylated by PKA (protein kinase A) in vitro within the disordered N-terminal segment of Nth1. Sedimentation analysis and enzyme kinetics measurements show that both yeast 14-3-3 isoforms form a stable complex with phosphorylated Nth1 and significantly enhance its enzymatic activity. The 14-3-3-dependent activation of Nth1 is significantly more potent compared with Ca2+-dependent activation. Limited proteolysis confirmed that the 14-3-3 proteins interact with the N-terminal segment of Nth1 where all phosphorylation sites are located. Site-directed mutagenesis in conjunction with the enzyme activity measurements in vitro and the activation studies of mutant forms in vivo suggest that Ser60 and Ser83 are sites primarily responsible for PKA-dependent and 14-3-3-mediated activation of Nth1.


Journal of Neurochemistry | 2004

Molecular modeling of human MT2 melatonin receptor: the role of Val204, Leu272 and Tyr298 in ligand binding.

Petr Mazna; Veronika Obsilova; Irena Jelinkova; Ales Balik; Karel Berka; Zofie Sovova; Rüdiger Ettrich; Petr Svoboda; Tomas Obsil; Jan Teisinger

A model of the helical part of the human MT2 melatonin (hMT2) receptor, a member of the G protein‐coupled receptors superfamily has been generated, based on the structure of bovine rhodopsin. Modeling has been combined with site‐directed mutagenesis to investigate the role of the specific amino acid residues within the transmembrane domains (TM) numbers V, VI and VII of hMT2 receptor in the interaction with 2‐iodomelatonin. Saturation binding assays with 2‐iodomelatonin demonstrated that the substitution V204A (TMV) resulted in total loss of binding while the mutation V205A had no effect. The replacement of F209 with alanine led to a significant decrease in the Bmax value of receptor binding while mutations V205A and F209A also within TM V did not significantly change binding properties of the hMT2 receptor. In the case of TM VI, the substitution G271T caused substantial decrease in 2‐iodomelatonin binding to the hMT2 receptor. The change L272A (TM VI) as well as mutation Y298A within TM VII completely abolished ligand binding to the receptor. These data suggest that several new amino acid residues within TM V, VI and VII are involved in ligand–MT2 receptor interaction.


Journal of Biological Chemistry | 2011

Structural Basis for the 14-3-3 Protein-dependent Inhibition of the Regulator of G Protein Signaling 3 (RGS3) Function

Lenka Rezabkova; Petr Man; Petr Novák; Petr Herman; Jaroslav Vecer; Veronika Obsilova; Tomas Obsil

Background: The 14-3-3 protein binds to and regulates the function of the regulator of G protein signaling 3 (RGS3). Results: The 14-3-3 binding affects the structure of the Gα interaction portion of RGS3. Conclusion: The 14-3-3 protein blocks the interaction between the RGS3 and the Gα. Significance: This might explain the inhibitory function of 14-3-3 in the regulation of RGS3. Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins for the α-subunit of heterotrimeric G proteins. The function of certain RGS proteins is negatively regulated by 14-3-3 proteins, a family of highly conserved regulatory molecules expressed in all eukaryotes. In this study, we provide a structural mechanism for 14-3-3-dependent inhibition of RGS3-Gα interaction. We have used small angle x-ray scattering, hydrogen/deuterium exchange kinetics, and Förster resonance energy transfer measurements to determine the low-resolution solution structure of the 14-3-3ζ·RGS3 complex. The structure shows the RGS domain of RGS3 bound to the 14-3-3ζ dimer in an as-yet-unrecognized manner interacting with less conserved regions on the outer surface of the 14-3-3 dimer outside its central channel. Our results suggest that the 14-3-3 protein binding affects the structure of the Gα interaction portion of RGS3 as well as sterically blocks the interaction between the RGS domain and the Gα subunit of heterotrimeric G proteins.

Collaboration


Dive into the Veronika Obsilova's collaboration.

Top Co-Authors

Avatar

Tomas Obsil

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Petr Herman

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Jaroslav Vecer

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Jan Teisinger

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Petr Man

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Lenka Rezabkova

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

M. Sulc

Technical University of Liberec

View shared research outputs
Top Co-Authors

Avatar

Dalibor Kosek

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Evzen Boura

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jan Silhan

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge