Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Véronique Boudolf is active.

Publication


Featured researches published by Véronique Boudolf.


The Plant Cell | 2004

The Plant-Specific Cyclin-Dependent Kinase CDKB1;1 and Transcription Factor E2Fa-DPa Control the Balance of Mitotically Dividing and Endoreduplicating Cells in Arabidopsis

Véronique Boudolf; Kobe Vlieghe; Gerrit T.S. Beemster; Zoltán Magyar; Juan Antonio Torres Acosta; Sara Maes; Els Van Der Schueren; Dirk Inzé; Lieven De Veylder

Transgenic Arabidopsis thaliana plants overproducing the E2Fa-DPa transcription factor have two distinct cell-specific phenotypes: some cells divide ectopically and others are stimulated to endocycle. The decision of cells to undergo extra mitotic divisions has been postulated to depend on the presence of a mitosis-inducing factor (MIF). Plants possess a unique class of cyclin-dependent kinases (CDKs; B-type) for which no ortholog is found in other kingdoms. The peak of CDKB1;1 activity around the G2-M boundary suggested that it might be part of the MIF. Plants that overexpressed a dominant negative allele of CDKB1;1 underwent enhanced endoreduplication, demonstrating that CDKB1;1 activity was required to inhibit the endocycle. Moreover, when the mutant CDKB1;1 allele was overexpressed in an E2Fa-DPa–overproducing background, it enhanced the endoreduplication phenotype, whereas the extra mitotic cell divisions normally induced by E2Fa-DPa were repressed. Surprisingly, CDKB1;1 transcription was controlled by the E2F pathway, as shown by its upregulation in E2Fa-DPa–overproducing plants and mutational analysis of the E2F binding site in the CDKB1;1 promoter. These findings illustrate a cross talking mechanism between the G1-S and G2-M transition points.


Current Biology | 2005

The DP-E2F-like Gene DEL1 Controls the Endocycle in Arabidopsis thaliana

Kobe Vlieghe; Véronique Boudolf; Gerrit T.S. Beemster; Sara Maes; Zoltán Magyar; Ana Atanassova; Janice de Almeida Engler; Ruth De Groodt; Dirk Inzé; Lieven De Veylder

Endoreduplication or DNA replication without mitosis is widespread in nature. Well-known examples are fruit fly polytene chromosomes and cereal endosperm. Although endocycles are thought to be driven by the same regulators as those that control the G1-S transition of the mitotic cell cycle, the molecular mechanisms that differentiate mitotically dividing cells from endoreduplicating ones are largely unknown. A novel class of atypical E2F-like proteins has recently been identified and is designated E2F7 in mammals and DP-E2F-like (DEL) in Arabidopsis thaliana . We demonstrate that loss of DEL1 function resulted in increased ploidy levels, whereas ectopic expression of DEL1 reduced endoreduplication. Ploidy changes were correlated with altered expression of a subset of E2F target genes encoding proteins necessary for DNA replication. Because DEL1 proteins were postulated to antagonize the E2F pathway, we generated DEL1-E2Fa-DPa triple transgenics. DEL1 inhibited the endoreduplication phenotype, but not the ectopic cell divisions that resulted from the overexpression of both E2Fa and DPa, illustrating that DEL1 specifically represses the endocycle. Because DEL1 transcripts were detected exclusively in mitotically dividing cells, we conclude that DEL1 is an important novel inhibitor of the endocycle and preserves the mitotic state of proliferating cells by suppressing transcription of genes that are required for cells to enter the DNA endoreduplication cycle.


The Plant Cell | 2004

B1-Type Cyclin-Dependent Kinases Are Essential for the Formation of Stomatal Complexes in Arabidopsis thaliana

Véronique Boudolf; Rosa Maria Barrôco; Janice de Almeida Engler; Aurine Verkest; Tom Beeckman; Mirande Naudts; Dirk Inzé; Lieven De Veylder

Cyclin-dependent kinases (CDKs) are key regulators of the cell cycle. In yeasts, only one CDK is sufficient to drive cells through the cell cycle, whereas higher eukaryotes developed a family of related CDKs. Curiously, plants contain a unique class of CDKs (B-type CDKs), whose function is still unclear. We show that the CDKB1;1 gene of Arabidopsis (Arabidopsis thaliana) is highly expressed in guard cells and stomatal precursor cells of cotyledons, suggesting a prominent role for B-type CDKs in stomatal development. In accordance, transgenic Arabidopsis plants with reduced B-type CDK activity had a decreased stomatal index because of an early block of meristemoid division and inhibition of satellite meristemoid formation. Many aberrant stomatal cells were observed, all of them blocked in the G2 phase of the cell cycle. Although division of stomatal precursors was inhibited, cells still acquired stomatal identity, illustrating that stomatal cell differentiation is independent of cellular and nuclear division.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset

Tim Lammens; Véronique Boudolf; Leila Kheibarshekan; L. Panagiotis Zalmas; Tarik Gaamouche; Sara Maes; Marleen Vanstraelen; Eva Kondorosi; Nicholas B. La Thangue; Willy Govaerts; Dirk Inzé; Lieven De Veylder

The endocycle represents an alternative cell cycle that is activated in various developmental processes, including placental formation, Drosophila oogenesis, and leaf development. In endocycling cells, mitotic cell cycle exit is followed by successive doublings of the DNA content, resulting in polyploidy. The timing of endocycle onset is crucial for correct development, because polyploidization is linked with cessation of cell division and initiation of terminal differentiation. The anaphase-promoting complex/cyclosome (APC/C) activator genes CDH1, FZR, and CCS52 are known to promote endocycle onset in human, Drosophila, and Medicago species cells, respectively; however, the genetic pathways governing development-dependent APC/CCDH1/FZR/CCS52 activity remain unknown. We report that the atypical E2F transcription factor E2Fe/DEL1 controls the expression of the CDH1/FZR orthologous CCS52A2 gene from Arabidopsis thaliana. E2Fe/DEL1 misregulation resulted in untimely CCS52A2 transcription, affecting the timing of endocycle onset. Correspondingly, ectopic CCS52A2 expression drove cells into the endocycle prematurely. Dynamic simulation illustrated that E2Fe/DEL1 accounted for the onset of the endocycle by regulating the temporal expression of CCS52A2 during the cell cycle in a development-dependent manner. Analogously, the atypical mammalian E2F7 protein was associated with the promoter of the APC/C-activating CDH1 gene, indicating that the transcriptional control of APC/C activator genes by atypical E2Fs might be evolutionarily conserved.


Plant Physiology | 2009

CDKB1;1 Forms a Functional Complex with CYCA2;3 to Suppress Endocycle Onset

Véronique Boudolf; Tim Lammens; Joanna Boruc; Jelle Van Leene; Hilde Van Den Daele; Sara Maes; Gert Van Isterdael; Eugenia Russinova; Eva Kondorosi; Erwin Witters; Geert De Jaeger; Dirk Inzé; Lieven De Veylder

The mitosis-to-endocycle transition requires the controlled inactivation of M phase-associated cyclin-dependent kinase (CDK) activity. Previously, the B-type CDKB1;1 was identified as an important negative regulator of endocycle onset. Here, we demonstrate that CDKB1;1 copurifies and associates with the A2-type cyclin CYCA2;3. Coexpression of CYCA2;3 with CDKB1;1 triggered ectopic cell divisions and inhibited endoreduplication. Moreover, the enhanced endoreduplication phenotype observed after overexpression of a dominant-negative allele of CDKB1;1 could be partially complemented by CYCA2;3 co-overexpression, illustrating that both subunits unite in vivo to form a functional complex. CYCA2;3 protein stability was found to be controlled by CCS52A1, an activator of the anaphase-promoting complex. We conclude that CCS52A1 participates in endocycle onset by down-regulating CDKB1;1 activity through the destruction of CYCA2;3.


The EMBO Journal | 2008

The DNA replication checkpoint aids survival of plants deficient in the novel replisome factor ETG1

Naoki Takahashi; Tim Lammens; Véronique Boudolf; Sara Maes; Takeshi Yoshizumi; Geert De Jaeger; Erwin Witters; Dirk Inzé; Lieven De Veylder

Complete and accurate chromosomal DNA replication is essential for the maintenance of the genetic integrity of all organisms. Errors in replication are buffered by the activation of DNA stress checkpoints; however, in plants, the relative importance of a coordinated induction of DNA repair and cell cycle‐arresting genes in the survival of replication mutants is unknown. In a systematic screen for Arabidopsis thaliana E2F target genes, the E2F TARGET GENE 1 (ETG1) was identified as a novel evolutionarily conserved replisome factor. ETG1 was associated with the minichromosome maintenance complex and was crucial for efficient DNA replication. Plants lacking the ETG1 gene had serrated leaves due to cell cycle inhibition triggered by the DNA replication checkpoints, as shown by the transcriptional induction of DNA stress checkpoint genes. The importance of checkpoint activation was highlighted by double mutant analysis: whereas etg1 mutant plants developed relatively normally, a synthetically lethal interaction was observed between etg1 and the checkpoint mutants wee1 and atr, demonstrating that activation of a G2 cell cycle checkpoint accounts for survival of ETG1‐deficient plants.


New Phytologist | 2013

Brassinosteroid production and signaling differentially control cell division and expansion in the leaf

Miroslava Zhiponova; Isabelle Vanhoutte; Véronique Boudolf; Camilla Betti; Stijn Dhondt; Frederik Coppens; Evelien Mylle; Sara Maes; Mary-Paz González-García; Ana I. Caño-Delgado; Dirk Inzé; Gerrit T.S. Beemster; Lieven De Veylder; Eugenia Russinova

Brassinosteroid (BR) hormones control plant growth through acting on both cell expansion and division. Here, we examined the role of BRs in leaf growth using the Arabidopsis BR-deficient mutant constitutive photomorphogenesis and dwarfism (cpd). We show that the reduced size of cpd leaf blades is a result of a decrease in cell size and number, as well as in venation length and complexity. Kinematic growth analysis and tissue-specific marker gene expression revealed that the leaf phenotype of cpd is associated with a prolonged cell division phase and delayed differentiation. cpd-leaf-rescue experiments and leaf growth analysis of BR biosynthesis and signaling gain-of-function mutants showed that BR production and BR receptor-dependent signaling differentially control the balance between cell division and expansion in the leaf. Investigation of cell cycle markers in leaves of cpd revealed the accumulation of mitotic proteins independent of transcription. This correlated with an increase in cyclin-dependent kinase activity, suggesting a role for BRs in control of mitosis.


The Plant Cell | 2011

Arabidopsis ULTRAVIOLET-B-INSENSITIVE4 Maintains Cell Division Activity by Temporal Inhibition of the Anaphase-Promoting Complex/Cyclosome

Jefri Heyman; Hilde Van Den Daele; Kevin De Wit; Véronique Boudolf; Barbara Berckmans; Aurine Verkest; Claire Lessa Alvim Kamei; Geert De Jaeger; Csaba Koncz; Lieven De Veylder

This work identifies ULTRAVIOLET-B-INSENSITIVE4 as a plant-specific inhibitor of the Anaphase-Promoting Complex/Cyclosome E3-ubiquitine ligase. Its activity allows the temporal accumulation of mitotic cyclins during the DNA replication phase, thereby linking DNA replication with mitosis. The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin ligase that regulates progression through the cell cycle by marking key cell division proteins for destruction. To ensure correct cell cycle progression, accurate timing of APC/C activity is important, which is obtained through its association with both activating and inhibitory subunits. However, although the APC/C is highly conserved among eukaryotes, no APC/C inhibitors are known in plants. Recently, we have identified ULTRAVIOLET-B-INSENSITIVE4 (UVI4) as a plant-specific component of the APC/C. Here, we demonstrate that UVI4 uses conserved APC/C interaction motifs to counteract the activity of the CELL CYCLE SWITCH52 A1 (CCS52A1) activator subunit, inhibiting the turnover of the A-type cyclin CYCA2;3. UVI4 is expressed in an S phase-dependent fashion, likely through the action of E2F transcription factors. Correspondingly, uvi4 mutant plants failed to accumulate CYCA2;3 during the S phase and prematurely exited the cell cycle, triggering the onset of the endocycle. We conclude that UVI4 regulates the temporal inactivation of APC/C during DNA replication, allowing CYCA2;3 to accumulate above the level required for entering mitosis, and thereby regulates the meristem size and plant growth rate.


Plant Journal | 2009

Systematic analysis of cell‐cycle gene expression during Arabidopsis development

Janice de Almeida Engler; Lieven De Veylder; Ruth De Groodt; Stephane Rombauts; Véronique Boudolf; Björn De Meyer; Adriana Silva Hemerly; Paulo Cavalcanti Gomes Ferreira; Tom Beeckman; Mansour Karimi; Pierre Hilson; Dirk Inzé; Gilbert Engler

The steady-state distribution of cell-cycle transcripts in Arabidopsis thaliana seedlings was studied in a broad in situ survey to provide a better understanding of the expression of cell-cycle genes during plant development. The 61 core cell-cycle genes analyzed were expressed at variable levels throughout the different plant tissues: 23 genes generally in dividing and young differentiating tissues, 34 genes mostly in both dividing and differentiated tissues and four gene transcripts primarily in differentiated tissues. Only 21 genes had a typical patchy expression pattern, indicating tight cell-cycle regulation. The increased expression of 27 cell-cycle genes in the root elongation zone hinted at their involvement in the switch from cell division to differentiation. The induction of 20 cell-cycle genes in differentiated cortical cells of etiolated hypocotyls pointed to their possible role in the process of endoreduplication. Of seven cyclin-dependent kinase inhibitor genes, five were upregulated in etiolated hypocotyls, suggesting a role in cell-cycle arrest. Nineteen genes were preferentially expressed in pericycle cells activated by auxin that give rise to lateral root primordia. Approximately 1800 images have been collected and can be queried via an online database. Our in situ analysis revealed that 70% of the cell-cycle genes, although expressed at different levels, show a large overlap in their localization. The lack of regulatory motifs in the upstream regions of the analyzed genes suggests the absence of a universal transcriptional control mechanism for all cell-cycle genes.


Plant Journal | 2012

CCS52 and DEL1 genes are key components of the endocycle in nematode‐induced feeding sites

Janice de Almeida Engler; Tina Kyndt; Paulo Vieira; Elke Van de Cappelle; Véronique Boudolf; Vanesa Sanchez; Carolina Escobar; Lieven De Veylder; Gilbert Engler; Pierre Abad; Godelieve Gheysen

The establishment of galls and syncytia as feeding sites induced by root-knot and cyst nematodes, respectively, involves a progressive increase in nuclear and cellular size. Here we describe the functional characterization of endocycle activators CCS52A, CCS52B and a repressor of the endocycle, DEL1, during two types of nematode feeding site development in Arabidopsis thaliana. In situ hybridization analysis showed that expression of CCS52A1 and CCS52B was strongly induced in galls and syncytia and DEL1 was stably but weakly expressed throughout feeding site development. Down-regulation and over-expression of CCS52 and DEL1 in Arabidopsis drastically affected giant cell and syncytium growth, resulting in restrained nematode development, illustrating the need for mitotic activity and endo-reduplication for feeding site maturation. Exploiting the mechanism of endo-reduplication may be envisaged as a strategy to control plant-parasitic nematodes.

Collaboration


Dive into the Véronique Boudolf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zoltán Magyar

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Janice de Almeida Engler

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Lammens

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge