Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Véronique Collin-Faure is active.

Publication


Featured researches published by Véronique Collin-Faure.


Molecular & Cellular Proteomics | 2013

Molecular Responses of Mouse Macrophages to Copper and Copper Oxide Nanoparticles Inferred from Proteomic Analyses

Sarah Triboulet; Catherine Aude-Garcia; Marie Carrière; Hélène Diemer; Fabienne Proamer; Aurélie Habert; Mireille Chevallet; Véronique Collin-Faure; Jean-Marc Strub; Daniel Hanau; Alain Van Dorsselaer; Nathalie Herlin-Boime; Thierry Rabilloud

The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in oxidative stress responses (superoxide dismutases and peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and mitochondrial proteins (especially oxidative phosphorylation complex subunits). Validation studies employing functional analyses showed that the increases in glutathione biosynthesis and in mitochondrial complexes observed in the proteomic screen were critical to cell survival upon stress with copper-based nanoparticles; pharmacological inhibition of these two pathways enhanced cell vulnerability to copper-based nanoparticles, but not to copper ions. Furthermore, functional analyses using primary macrophages derived from bone marrow showed a decrease in reduced glutathione levels, a decrease in the mitochondrial transmembrane potential, and inhibition of phagocytosis and of lipopolysaccharide-induced nitric oxide production. However, only a fraction of these effects could be obtained with copper ions. In conclusion, this study showed that macrophage functions are significantly altered by copper-based nanoparticles. Also highlighted are the cellular pathways modulated by cells for survival and the exemplified cross-toxicities that can occur between copper-based nanoparticles and pharmacological agents.


PLOS ONE | 2015

Comparative Proteomic Analysis of the Molecular Responses of Mouse Macrophages to Titanium Dioxide and Copper Oxide Nanoparticles Unravels Some Toxic Mechanisms for Copper Oxide Nanoparticles in Macrophages

Sarah Triboulet; Catherine Aude-Garcia; Lucie Armand; Véronique Collin-Faure; Mireille Chevallet; Hélène Diemer; Adèle Gerdil; Fabienne Proamer; Jean Marc Strub; Aurélie Habert; Nathalie Herlin; Alain Van Dorsselaer; Marie Carrière; Thierry Rabilloud

Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.


Biochemical Journal | 2010

Dual roles for MEF2A and MEF2D during human macrophage terminal differentiation and c-Jun expression.

Catherine Aude-Garcia; Véronique Collin-Faure; Huguette Bausinger; Daniel Hanau; Thierry Rabilloud; Claudie Lemercier

Recent reports have evidenced a role for MEF2C (myocyte enhancer factor 2C) in myelopoiesis, although the precise functions of this transcription factor are still unclear. We show in the present study that MEF2A and MEF2D, two other MEF2 family members, are expressed in human primary monocytes and in higher amounts in monocyte-derived macrophages. High levels of MEF2A-MEF2D heterodimers are found in macrophage-differentiated HL60 cells. Chromatin immunoprecipitations demonstrate that MEF2A is present on the c-Jun promoter, both in undifferentiated and in macrophage-differentiated cells. Moreover, c-Jun expression is derepressed in undifferentiated cells in the presence of HDAC (histone deacetylase) inhibitor, indicating the importance of chromatin acetylation in this process. We show that MEF2A/D dimers strongly interact with HDAC1, and to a lesser extent with HDAC7 in macrophages, whereas low levels of MEF2A/D-HDAC1 complexes are found in undifferentiated cells or in monocytes. Since trichostatin A does not disrupt MEF2A/D-HDAC1 complexes, we analysed the potential interaction of MEF2A with p300 histone acetyltransferase, whose expression is up-regulated in macrophages. Interestingly, endogenous p300 only associates with MEF2A in differentiated macrophages, indicating that MEF2A/D could activate c-Jun expression in macrophages through a MEF2A/D-p300 activator complex. The targets of MEF2A/D-HDAC1-HDAC7 multimers remain to be identified. Nevertheless, these data highlight for the first time the possible dual roles of MEF2A and MEF2D in human macrophages, as activators or as repressors of gene transcription.


Journal of Proteomics | 2016

Molecular responses of alveolar epithelial A549 cells to chronic exposure to titanium dioxide nanoparticles: A proteomic view.

Lucie Armand; Mathilde Biola-Clier; Laure Bobyk; Véronique Collin-Faure; Hélène Diemer; Jean Marc Strub; Sarah Cianférani; Alain Van Dorsselaer; Nathalie Herlin-Boime; Thierry Rabilloud; Marie Carrière

UNLABELLED Although the biological effects of titanium dioxide nanoparticles (TiO2-NPs) have been studied for more than two decades, the mechanisms governing their toxicity are still unclear. We applied 2D-gel proteomics analysis on A549 epithelial alveolar cells chronically exposed for 2months to 2.5 or 50μg/mL of deeply characterized TiO2-NPs, in order to obtain comprehensive molecular responses that may reflect functional outcomes. We show that exposure to TiO2-NPs impacts the abundance of 30 protein species, corresponding to 22 gene products. These proteins are involved in glucose metabolism, trafficking, gene expression, mitochondrial function, proteasome activity and DNA damage response. Besides, our results suggest that p53 pathway is activated, slowing down cell cycle progression and reducing cell proliferation rate. Moreover, we report increased content of chaperones-related proteins, which suggests homeostasis re-establishment. Finally, our results highlight that chronic exposure to TiO2-NPs affects the same cellular functions as acute exposure to TiO2-NPs, although lower exposure concentrations and longer exposure times induce more intense cellular response. BIOLOGICAL SIGNIFICANCE Our results make possible the identification of new mechanisms that explain TiO2-NP toxicity upon long-term, in vitro exposure of A549 cells. It is the first article describing -omics results obtained with this experimental strategy. We show that this long-term exposure modifies the cellular content of proteins involved in functions including mitochondrial activity, intra- and extracellular trafficking, proteasome activity, glucose metabolism, and gene expression. Moreover we observe modification of content of proteins that activate the p53 pathway, which suggest the induction of a DNA damage response. Technically, our results show that exposure of A549 cells to a high concentration of TiO2-NPs leads to the identification of modulations of the same functional categories than exposure to low, more realistic concentrations. Still the intensity differs between these two exposure scenarios. We also show that chronic exposure to TiO2-NPs induces the modulation of cellular functions that have already been reported in the literature as being impacted in acute exposure scenarios. This proves that the exposure protocol in in vitro experiments related to nanoparticle toxicology might be cautiously chosen since inappropriate scenario may lead to inappropriate and/or incomplete conclusions.


Journal of Proteomics | 2016

A combined proteomic and targeted analysis unravels new toxic mechanisms for zinc oxide nanoparticles in macrophages.

Catherine Aude-Garcia; Bastien Dalzon; Jean-Luc Ravanat; Véronique Collin-Faure; Hélène Diemer; Jean Marc Strub; Sarah Cianférani; Alain Van Dorsselaer; Marie Carrière; Thierry Rabilloud

UNLABELLED The cellular responses of the J774 macrophage cell line to zinc oxide and zirconium oxide nanoparticles have been studied by a comparative quantitative, protein level based proteomic approach. The most prominent results have been validated by targeted approaches. These approaches have been carried out under culture conditions that stimulate mildly the aryl hydrocarbon receptor, thereby mimicking conditions that can be encountered in vivo in complex environments. The comparative approach with two nanoparticles allows to separate the common responses, which can be attributed to the phagocytosis event per se, from the response specific to each type of nanoparticles. The zinc-specific responses are the most prominent ones and include mitochondrial proteins too, but also signaling molecules such as MyD88, proteins associated with methylglyoxal detoxification (glyoxalase 2, aldose reductase) and deoxyribonucleotide hydrolases. The in cellulo inhibition of GAPDH by zinc was also documented, representing a possible source of methylglyoxal in the cells, leading to an increase in methylglyoxal-modified DNA bases. These observations may be mechanistically associated with the genotoxic effect of zinc and its selective effects on cancer cells. BIOLOGICAL SIGNIFICANCE The responses of the murine J774 macrophage cell lines to two types of metallic oxide nanoparticles (zinc oxide and zirconium dioxide) were studied by a comparative 2D gel based approach. This allows sorting of shared responses from nanoparticle-specific responses. Zinc oxide nanoparticles induced specifically a strong decrease in the mitochondrial function, in phagocytosis and also an increase in the methylglyoxal-associated DNA damage, which may explain the well known genotoxicity of zinc. In conclusion, this study allows highlighting of pathways that may play an important role in the toxicity of the zinc oxide nanoparticles.


Cellular and Molecular Life Sciences | 2013

The opportunistic pathogen Pseudomonas aeruginosa activates the DNA double-strand break signaling and repair pathway in infected cells

Sylvie Elsen; Véronique Collin-Faure; Xavier Gidrol; Claudie Lemercier

Highly hazardous DNA double-strand breaks can be induced in eukaryotic cells by a number of agents including pathogenic bacterial strains. We have investigated the genotoxic potential of Pseudomonas aeruginosa, an opportunistic pathogen causing devastating nosocomial infections in cystic fibrosis or immunocompromised patients. Our data revealed that infection of immune or epithelial cells by P. aeruginosa triggered DNA strand breaks and phosphorylation of histone H2AX (γH2AX), a marker of DNA double-strand breaks. Moreover, it induced formation of discrete nuclear repair foci similar to gamma-irradiation-induced foci, and containing γH2AX and 53BP1, an adaptor protein mediating the DNA-damage response pathway. Gene deletion, mutagenesis, and complementation in P. aeruginosa identified ExoS bacterial toxin as the major factor involved in γH2AX induction. Chemical inhibition of several kinases known to phosphorylate H2AX demonstrated that Ataxia Telangiectasia Mutated (ATM) was the principal kinase in P. aeruginosa-induced H2AX phosphorylation. Finally, infection led to ATM kinase activation by an auto-phosphorylation mechanism. Together, these data show for the first time that infection by P. aeruginosa activates the DNA double-strand break repair machinery of the host cells. This novel information sheds new light on the consequences of P. aeruginosa infection in mammalian cells. As pathogenic Escherichia coli or carcinogenic Helicobacter pylori can alter genome integrity through DNA double-strand breaks, leading to chromosomal instability and eventually cancer, our findings highlight possible new routes for further investigations of P. aeruginosa in cancer biology and they identify ATM as a potential target molecule for drug design.


Proteomics | 2011

Improvements and simplifications in in‐gel fluorescent detection of proteins using ruthenium II tris‐(bathophenanthroline disulfonate): The poor man's fluorescent detection method

Catherine Aude-Garcia; Véronique Collin-Faure; Sylvie Luche; Thierry Rabilloud

Fluorescent detection of proteins is a popular method of detection allying sensitivity, linearity and compatibility with mass spectrometry. Among the numerous methods described in the literature, staining with ruthenium II tris(bathophenanthroline disulfonate) is particularly cost‐effective, but slightly cumbersome owing to difficulties in the preparation of the complex and complexity of staining protocols. We describe here the modifications on both aspects that allow to perform a higher contrast staining and offer a more robust method of complex preparation, thereby maximizing the advantages of the method.


Nanotoxicology | 2016

Different in vitro exposure regimens of murine primary macrophages to silver nanoparticles induce different fates of nanoparticles and different toxicological and functional consequences

Catherine Aude-Garcia; Florent Villiers; Véronique Collin-Faure; Karine Pernet-Gallay; Pierre-Henri Jouneau; Stéphanie Sorieul; Geoffrey Mure; Adèle Gerdil; Nathalie Herlin-Boime; Marie Carrière; Thierry Rabilloud

Abstract Silver nanoparticles (Ag-NPs) are used in a variety of consumers’ goods. Their toxicological impact is currently intensely studied, mostly upon acute exposure, but their intracellular dissolution and fate is rather poorly documented. In this study, murine primary macrophages were exposed to a single high but non-lethal dose of Ag-NPs or to repeated, low doses of Ag-NPs. Cells were either collected immediately after acute exposure or after 72 h of recovery in the NP-free exposure medium. Ag intracellular content and distribution were analyzed by particle-induced X-ray emission, transmission electron microscopy coupled to energy-dispersive spectroscopy analysis and inductively coupled plasma mass spectrometry. In parallel, macrophage functionality as well as inflammatory and thiol-responses were assessed after Ag-NP exposure. We show that Ag accumulation in macrophages is similar upon acute and repeated exposure to Ag-NPs, and that Ag is partly expelled from cells during the 72 h recovery stage. However, acute exposure leads to a strong response of macrophages, characterized by reduced mitochondrial membrane potential, phagocytic capacity and nitric oxide (NO) production upon lipopolysaccharide (LPS) stimulation. Under this condition, we also show an increased release of proinflammatory cytokines as well as a decreased release of anti-inflammatory cytokines. This response is reversible since these biomarkers reach their basal level after the recovery phase; and is much less intense in repeatedly exposed cells. These results suggest that repeated exposure of macrophages to Ag-NPs, which is a more realistic exposure scenario than acute exposure, leads to significant Ag intracellular accumulation but a much less intense toxicological response.


Proteomics | 2016

Culture medium associated changes in the core proteome of macrophages and in their responses to copper oxide nanoparticles.

Bastien Dalzon; Hélène Diemer; Véronique Collin-Faure; Sarah Cianférani; Thierry Rabilloud; Catherine Aude-Garcia

The physiology of cells cultured in vitro depends obviously on the external conditions, including the nutrients present in the culture medium. In order to test the influence of this parameter, J774 macrophages grown either in RPMI or in DMEM were compared by a combination of targeted analyses and a proteomic approach. The two media differ in their glucose, amino acids, and vitamins concentrations, but there were no significant differences in the cell cycle or in the percentage of phagocytic cells in both media, although the phagocytic capacity (i.e. the number of phagocytized particles) was higher in DMEM. Conversely, we found that J774 cells grown in RPMI produced more nitric oxide in response to lipopolysaccharide. The proteomic study highlighted differences affecting the central metabolism and nucleotide metabolism, cytoskeleton, protein degradation, and cell signaling. Furthermore, proteomics showed that J774 cells grown in RPMI or in DMEM and exposed to copper oxide nanoparticles respond rather differently, with only a few proteins similarly modulated between cells grown in both media. Taken together, our results show that the basal state of cells grown in two different media is different, and this may affect the way they respond to an external stimulus or stress.


Nanosafe2010: International Conference on Safe Production and Use of Nanomaterials | 2011

Interference between nanoparticles and metal homeostasis

A. Petit; C Aude Garcia; S Candéias; A Casanova; P Catty; P Charbonnier; Mireille Chevallet; Véronique Collin-Faure; M Cuillel; T Douki; Nathalie Herlin-Boime; Cécile Lelong; Sylvie Luche; E Mintz; Jean-Marc Moulis; V Nivière; S Ollagnier de Choudens; Thierry Rabilloud; Jean-Luc Ravanat; S Sauvaigo; Marie Carrière; I Michaud-Soret

The TiO2 nanoparticles (NPs) are now produced abundantly and widely used in a variety of consumer products. Due to the important increase in the production of TiO2-NPs, potential widespread exposure of humans and environment may occur during both the manufacturing process and final use. Therefore, the potential toxicity of TiO2-NPs on human health and environment has attracted particular attention. Unfortunately, the results of the large number of studies on the toxicity of TiO2-NPs differ significantly, mainly due to an incomplete characterization of the used nanomaterials in terms of size, shape and crystalline structure and to their unknown state of agglomeration/aggregation. The purpose of our project entitled NanoBioMet is to investigate if interferences between nanoparticles and metal homeostasis could be observed and to study the toxicity mechanisms of TiO2-NPs with well-characterized physicochemical parameters, using proteomic and molecular approaches. A perturbation of metal homeostasis will be evaluated upon TiO2-NPs exposure which could generate reactive oxygen species (ROS) production. Moreover, oxidative stress consequences such as DNA damage and lipid peroxidation will be studied. The toxicity of TiO2-NPs of different sizes and crystalline structures will be evaluated both in prokaryotic (E. coli) and eukaryotic cells (A549 human pneumocytes, macrophages, and hepatocytes). First results of the project will be presented concerning the dispersion of TiO2-NPs in bacterial medium, proteomic studies on total extracts of macrophages and genotoxicity on pneumocytes.

Collaboration


Dive into the Véronique Collin-Faure's collaboration.

Top Co-Authors

Avatar

Thierry Rabilloud

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Catherine Aude-Garcia

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Marie Carrière

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathalie Herlin-Boime

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aurélie Habert

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Bastien Dalzon

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Mireille Chevallet

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge