Véronique Dubreuil
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Véronique Dubreuil.
Journal of Cell Science | 2005
Anne-Marie Marzesco; Peggy Janich; Michaela Wilsch-Bräuninger; Véronique Dubreuil; Katja Langenfeld; Denis Corbeil; Wieland B. Huttner
Apical plasma membrane constituents of mammalian neural stem/progenitor cells have recently been implicated in maintaining their stem/progenitor cell state. Here, we report that in the developing embryonic mouse brain, the fluid in the lumen of the neural tube contains membrane particles carrying the stem cell marker prominin-1 (CD133), a pentaspan membrane protein found on membrane protrusions of the apical surface of neuroepithelial cells. Two size classes of prominin-1-containing membrane particles were observed in the ventricular fluid: ≈600-nm particles, referred to as P2 particles, and 50-80-nm vesicles, referred to as P4 particles. The P2 and P4 particles appeared in the ventricular fluid at the very onset and during the early phase of neurogenesis, respectively. Concomitant with their appearance, the nature of the prominin-1-containing apical plasma membrane protrusions of neuroepithelial cells changed, in that microvilli were lost and large pleiomorphic protuberances appeared. P4 particles were found in various body fluids of adult humans, including saliva, seminal fluid and urine, and were released by the epithelial model cell line Caco-2 upon differentiation. Importantly, P4 particles were distinct from exosomes. Our results demonstrate the widespread occurrence of a novel class of extracellular membrane particles containing proteins characteristic of stem cells, and raise the possibility that the release of the corresponding membrane subdomains from the apical surface of neural progenitors and other epithelial cells may have a role in tissue development and maintenance. Moreover, the presence of prominin-1-containing membrane particles in human body fluids may provide the basis for a protein-based diagnosis of certain diseases.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Véronique Dubreuil; Nelina Ramanantsoa; Delphine Trochet; Vanessa Vaubourg; Jeanne Amiel; Jorge Gallego; Jean-François Brunet; Christo Goridis
Breathing is maintained and controlled by a network of neurons in the brainstem that generate respiratory rhythm and provide regulatory input. Central chemoreception, the mechanism for CO2 detection that provides an essential stimulatory input, is thought to involve neurons located near the medullary surface, whose nature is controversial. Good candidates are serotonergic medullary neurons and glutamatergic neurons in the parafacial region. Here, we show that mice bearing a mutation in Phox2b that causes congenital central hypoventilation syndrome in humans breathe irregularly, do not respond to an increase in CO2, and die soon after birth from central apnea. They specifically lack Phox2b-expressing glutamatergic neurons located in the parafacial region, whereas other sites known or supposed to be involved in the control of breathing are anatomically normal. These data provide genetic evidence for the essential role of a specific population of medullary interneurons in driving proper breathing at birth and will be instrumental in understanding the etiopathology of congenital central hypoventilation syndrome.
Journal of Cell Biology | 2007
Véronique Dubreuil; Anne-Marie Marzesco; Denis Corbeil; Wieland B. Huttner; Michaela Wilsch-Bräuninger
Expansion of the neocortex requires symmetric divisions of neuroepithelial cells, the primary progenitor cells of the developing mammalian central nervous system. Symmetrically dividing neuroepithelial cells are known to form a midbody at their apical (rather than lateral) surface. We show that apical midbodies of neuroepithelial cells concentrate prominin-1 (CD133), a somatic stem cell marker and defining constituent of a specific plasma membrane microdomain. Moreover, these apical midbodies are released, as a whole or in part, into the extracellular space, yielding the prominin-1–enriched membrane particles found in the neural tube fluid. The primary cilium of neuroepithelial cells also concentrates prominin-1 and appears to be a second source of the prominin-1–bearing extracellular membrane particles. Our data reveal novel origins of extracellular membrane traffic that enable neural stem and progenitor cells to avoid the asymmetric inheritance of the midbody observed for other cells and, by releasing a stem cell membrane microdomain, to potentially influence the balance of their proliferation versus differentiation.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Christian Gestreau; Dirk Heitzmann; Joerg Thomas; Véronique Dubreuil; Sascha Bandulik; Markus Reichold; Saïd Bendahhou; Patricia Pierson; Christina Sterner; Julie Peyronnet-Roux; Ines Tegtmeier; Hannah Ehnes; Michael Georgieff; Florian Lesage; Jean-François Brunet; Christo Goridis; Richard Warth
Task2 K+ channel expression in the central nervous system is surprisingly restricted to a few brainstem nuclei, including the retrotrapezoid (RTN) region. All Task2-positive RTN neurons were lost in mice bearing a Phox2b mutation that causes the human congenital central hypoventilation syndrome. In plethysmography, Task2−/− mice showed disturbed chemosensory function with hypersensitivity to low CO2 concentrations, leading to hyperventilation. Task2 probably is needed to stabilize the membrane potential of chemoreceptive cells. In addition, Task2−/− mice lost the long-term hypoxia-induced respiratory decrease whereas the acute carotid-body-mediated increase was maintained. The lack of anoxia-induced respiratory depression in the isolated brainstem–spinal cord preparation suggested a central origin of the phenotype. Task2 activation by reactive oxygen species generated during hypoxia could silence RTN neurons, thus contributing to respiratory depression. These data identify Task2 as a determinant of central O2 chemoreception and demonstrate that this phenomenon is due to the activity of a small number of neurons located at the ventral medullary surface.
The Journal of Neuroscience | 2011
Nelina Ramanantsoa; Marie-Rose Hirsch; Muriel Thoby-Brisson; Véronique Dubreuil; Julien Bouvier; Pierre-Louis Ruffault; Boris Matrot; Gilles Fortin; Jean-François Brunet; Jorge Gallego; Christo Goridis
Breathing is a spontaneous, rhythmic motor behavior critical for maintaining O2, CO2, and pH homeostasis. In mammals, it is generated by a neuronal network in the lower brainstem, the respiratory rhythm generator (Feldman et al., 2003). A century-old tenet in respiratory physiology posits that the respiratory chemoreflex, the stimulation of breathing by an increase in partial pressure of CO2 in the blood, is indispensable for rhythmic breathing. Here we have revisited this postulate with the help of mouse genetics. We have engineered a conditional mouse mutant in which the toxic PHOX2B27Ala mutation that causes congenital central hypoventilation syndrome in man is targeted to the retrotrapezoid nucleus, a site essential for central chemosensitivity. The mutants lack a retrotrapezoid nucleus and their breathing is not stimulated by elevated CO2 at least up to postnatal day 9 and they barely respond as juveniles, but nevertheless survive, breathe normally beyond the first days after birth, and maintain blood PCO2 within the normal range. Input from peripheral chemoreceptors that sense PO2 in the blood appears to compensate for the missing CO2 response since silencing them by high O2 abolishes rhythmic breathing. CO2 chemosensitivity partially recovered in adulthood. Hence, during the early life of rodents, the excitatory input normally afforded by elevated CO2 is dispensable for life-sustaining breathing and maintaining CO2 homeostasis in the blood.
The EMBO Journal | 2008
Yoichi Kosodo; Kazunori Toida; Véronique Dubreuil; Paula Ale De Paiva Alexandre; Judith Schenk; Emi Kiyokage; Felipe Mora-Bermúdez; Tatsuo Arii; Jon D. W. Clarke; Wieland B. Huttner
Neuroepithelial (NE) cells, the primary stem and progenitor cells of the vertebrate central nervous system, are highly polarized and elongated. They retain a basal process extending to the basal lamina, while undergoing mitosis at the apical side of the ventricular zone. By studying NE cells in the embryonic mouse, chick and zebrafish central nervous system using confocal microscopy, electron microscopy and time‐lapse imaging, we show here that the basal process of these cells can split during M phase. Splitting occurred in the basal‐to‐apical direction and was followed by inheritance of the processes by either one or both daughter cells. A cluster of anillin, an essential component of the cytokinesis machinery, appeared at the distal end of the basal process in prophase and was found to colocalize with F‐actin at bifurcation sites, in both proliferative and neurogenic NE cells. GFP–anillin in the basal process moved apically to the cell body prior to anaphase onset, followed by basal‐to‐apical ingression of the cleavage furrow in telophase. The splitting of the basal process of M‐phase NE cells has implications for cleavage plane orientation and the relationship between mitosis and cytokinesis.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Kanako Saito; Véronique Dubreuil; Yoko Arai; Michaela Wilsch-Bräuninger; Dominik Schwudke; Gesine Saher; Takaki Miyata; Georg Breier; Christoph Thiele; Andrej Shevchenko; Klaus-Armin Nave; Wieland B. Huttner
Although sufficient cholesterol supply is known to be crucial for neurons in the developing mammalian brain, the cholesterol requirement of neural stem and progenitor cells in the embryonic central nervous system has not been addressed. Here we have conditionally ablated the activity of squalene synthase (SQS), a key enzyme for endogenous cholesterol production, in the neural stem and progenitor cells of the ventricular zone (VZ) of the embryonic mouse brain. Mutant embryos exhibited a reduced brain size due to the atrophy of the neuronal layers, and died at birth. Analyses of the E11.5–E15.5 dorsal telencephalon and diencephalon revealed that this atrophy was due to massive apoptosis of newborn neurons, implying that this progeny of the SQS-ablated neural stem and progenitor cells was dependent on endogenous cholesterol biosynthesis for survival. Interestingly, the neural stem and progenitor cells of the VZ, the primary target of SQS inactivation, did not undergo significant apoptosis. Instead, vascular endothelial growth factor (VEGF) expression in these cells was strongly upregulated via a hypoxia-inducible factor-1–independent pathway, and angiogenesis in the VZ was increased. Consistent with an increased supply of lipoproteins to these cells, the level of lipid droplets containing triacylglycerides with unsaturated fatty acyl chains was found to be elevated. Our study establishes a direct link between intracellular cholesterol levels, VEGF expression, and angiogenesis. Moreover, our data reveal a hitherto unknown compensatory process by which the neural stem and progenitor cells of the developing mammalian brain evade the detrimental consequences of impaired endogenous cholesterol biosynthesis.
FEBS Letters | 2009
Anne-Marie Marzesco; Michaela Wilsch-Bräuninger; Véronique Dubreuil; Peggy Janich; Katja Langenfeld; Christoph Thiele; Wieland B. Huttner; Denis Corbeil
We previously reported on the occurrence of prominin‐1‐carrying membrane vesicles that are released into body fluids from microvilli of epithelial cells. This release has been implicated in cell differentiation. Here we have characterized these vesicles released from the differentiated Caco‐2 cells. We find that in these vesicles, prominin‐1 directly interacts with membrane cholesterol and is associated with a membrane microdomain. The cholesterol depletion using methyl‐β‐cyclodextrin resulted in a marked increase in their release, and a dramatic change in the microvillar ultrastructure from a tubular shape to a “pearling” state, with multiple membrane constrictions, suggesting a role of membrane cholesterol in vesicle release from microvilli.
Development | 2000
Véronique Dubreuil; Marie-Rose Hirsch; Alexandre Pattyn; Jean-François Brunet; Christo Goridis
Development | 2002
Véronique Dubreuil; Marie-Rose Hirsch; Caroline Jouve; Jean-François Brunet; Christo Goridis