Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Véronique Habauzit is active.

Publication


Featured researches published by Véronique Habauzit.


Therapeutic Advances in Chronic Disease | 2012

Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: an update for clinicians

Véronique Habauzit; Christine Morand

Growing evidence suggests that polyphenols could be serious candidates to explain the protective effects of plant-derived foods and beverages. Based on current studies, a general consensus has been achieved to sustain the hypothesis that the specific intake of foods and beverages containing relatively high concentrations of flavonoids may play a meaningful role in reducing cardiovascular disease (CVD) risk through an improvement in vascular function and a modulation of inflammation. This review aims at providing an update on the effects of the consumption of polyphenols-rich foods on intermediate clinical markers of CVD in humans, namely cholesterolemia, blood pressure, endothelial function and platelet function. To date, on the basis of clinical studies, the demonstration is particularly convincing for flavonoids from cocoa-derived products and to a lesser extent for those of tea. While additional studies in this area are clearly needed, incorporating plant foods that are rich in flavanols in the diet of healthy individuals could help to reduce CVD risk. For flavonoids from fruits such as berries, pomegranate, grapes or citrus fruits and those from beverages such as red wine or coffee, the evidence is so far inconclusive. This is primarily due to the limited number and the weakness of experimental designs of the studies performed with these dietary sources. Future long-term well-designed investigations with polyphenols-rich foods but also with isolated phenolic compounds would provide valuable information to establish public health recommendations on polyphenols, taking into account both the nature of the compounds and the optimal dose, for cardiovascular health protection.


Journal of Applied Physiology | 2008

Hesperidin inhibits ovariectomized-induced osteopenia and shows differential effects on bone mass and strength in young and adult intact rats

Marie-Noëlle Horcajada; Véronique Habauzit; Anna Trzeciakiewicz; Christine Morand; Angel Gil-Izquierdo; J. Mardon; Patrice Lebecque; Marie-Jeanne Davicco; W. S. S. Chee; Véronique Coxam; Elizabeth Offord

The main aim of this study was to investigate the bone-sparing effect of hesperidin, one of the main flavonoid present in oranges, in two age groups of ovariectomized female rats, compared with their intact controls. Young (3 mo) and adult (6 mo) female Wistar rats were sham operated (SH) or ovariectomized (OVX) and then pair-fed for 90 days a casein-based diet supplemented or not with 0.5% hesperidin (Hp; n = 10/group). In older rats, Hp intake led to a partial inhibition of OVX-induced bone loss, whereas a complete inhibition was obtained in younger animals. At both ages, while plasma osteocalcin concentrations were unchanged, urinary excretion of deoxypyridinoline was reduced by Hp intake, suggesting that Hp was able to slow down bone resorption. Unexpectedly, in intact young rats, Hp consumption resulted in a significant increase in bone mineral density (BMD). Indeed, 6-mo-old HpSH rats had a similar BMD to 9-mo-old nontreated SH adult rats, suggesting an accelerated bone mass gain in the young rats. In contrast, in intact adult rats, Hp did not further increase BMD but did improve their bone strength. The results of this study show a protective effect of Hp on bone loss in OVX rats of both ages without uterine stimulation and accompanied by a lipid-lowering effect. The unexpected and intriguing findings obtained in intact rats showing improved BMD in young rats and improved femoral load in adult rats merit further investigation. The bone and lipid benefits of hesperidin make it an attractive dietary agent for the management of the health of postmenopausal women.


British Journal of Nutrition | 2009

Increased bioavailability of hesperetin-7-glucoside compared with hesperidin results in more efficient prevention of bone loss in adult ovariectomised rats.

Véronique Habauzit; Inge-Lise Nielsen; Angel Gil-Izquierdo; Anna Trzeciakiewicz; Christine Morand; W. S. S. Chee; Denis Barron; Patrice Lebecque; Marie-Jeanne Davicco; Gary Williamson; Elizabeth Offord; Véronique Coxam; Marie-Noëlle Horcajada

Hesperidin (Hp), a citrus flavonoid predominantly found in oranges, shows bone-sparing effects in ovariectomised (OVX) animals. In human subjects, the bioavailability of Hp can be improved by the removal of the rhamnose group to yield hesperetin-7-glucoside (H-7-glc). The aim of the present work was to test whether H-7-glc was more bioavailable and therefore more effective than Hp in the prevention of bone loss in the OVX rat. Adult 6-month-old female Wistar rats were sham operated or OVX, then pair fed for 90 d a casein-based diet supplemented or not with freeze-dried orange juice enriched with Hp or H-7-glc at two dose equivalents of the hesperetin aglycone (0.25 and 0.5 %). In the rats fed 0.5 %, a reduction in OVX-induced bone loss was observed regarding total bone mineral density (BMD):+7.0 % in OVX rats treated with Hp (HpOVX) and +6.6 % in OVX rats treated with H-7-glc (H-7-glcOVX) v. OVX controls (P < 0.05). In the rats fed 0.25 % hesperetin equivalents, the H-7-glcOVX group showed a 6.6 % improvement in total femoral BMD v. the OVX controls (P < 0.05), whereas the Hp diet had no effect at this dose. The BMD of rats fed 0.25 % H-7-glc was equal to that of those given 0.5 % Hp, but was not further increased at 0.5 % H-7-glc. Plasma hesperetin levels and relative urinary excretion were significantly enhanced in the H-7-glc v. Hp groups, and the metabolite profile showed the absence of eriodictyol metabolites and increased levels of hesperetin sulphates. Taken together, improved bioavailability of H-7-glc may explain the more efficient bone protection of this compound.


Phytochemistry Reviews | 2008

Phenolic phytochemicals and bone

Véronique Habauzit; Marie-Noëlle Horcajada

Concerning the prevention of osteoporosis, recognized as a major public health problem, nutrition may appear as an alternative strategy for optimizing health skeleton. The importance of adequate calcium and vitamin D intakes for bone health is now well documented. But, in addition to essential macro- and micronutrients, human diet contains a complex array of non-nutrient natural bioactive molecules, namely the phytochemicals that may act and protect bone. Among phytochemicals, emphasis has been so far placed upon polyphenols. Indeed, subsequent epidemiological studies have suggested associations between long-term consumption of diets rich in polyphenols and protection against chronic diseases. With respect to human health, flavonoids are the most extensively studied polyphenols. These compounds may be partly responsible for some of the positive links found between fruit and vegetables intake and higher bone mineral density in adults and children. However, no long-term intervention studies in humans have investigated the effect of specific phenolic phytochemicals on the prevention of bone loss in postmenopausal women, except for phytoestrogens (soy isoflavones, lignans). Besides, in animal models of postmenopausal osteoporosis, consumption of some dietary flavonoids has been shown to prevent ovariectomy-induced bone loss. Finally, few in vitro experiments with bone cells have reported cellular and molecular mechanisms of phytochemicals involved in bone metabolism. To date, investigations providing some evidence of a positive impact of some phytochemicals on bone metabolism are accumulating but further studies, notably clinical trials, are needed to explore the various bioactivities offered by such compounds. Anyway, it can be postulated that increased consumption of plant-derived foods, especially fruit and vegetables, may be positive in the prevention of osteoporosis.


Nutrition Research Reviews | 2009

When nutrition interacts with osteoblast function: molecular mechanisms of polyphenols

Anna Trzeciakiewicz; Véronique Habauzit; Marie-Noëlle Horcajada

Recent research has provided insights into dietary components that may optimise bone health and stimulate bone formation. Fruit and vegetable intake, as well as grains and other plant-derived food, have been linked to decreased risk of major chronic diseases including osteoporosis. This effect has been partially attributed to the polyphenols found in these foods. Thus, it has been suggested that these compounds may provide desirable bone health benefits through an action on bone cell metabolism. The present review will focus on how some polyphenols can modulate osteoblast function and reports which cellular signalling pathways are potentially implicated. However, to date, despite numerous investigations, few studies have provided clear evidence that phenolic compounds can act on osteoblasts. Polyphenols cited in the present review seem to be able to modulate the expression of transcription factors such as runt-related transcription factor-2 (Runx2) and Osterix, NF-kappaB and activator protein-1 (AP-1). It appears that polyphenols may act on cellular signalling such as mitogen-activated protein kinase (MAPK), bone morphogenetic protein (BMP), oestrogen receptor and osteoprotegerin/receptor activator of NF-kappaB ligand (OPG/RANKL) and thus may affect osteoblast functions. However, it is also important to take in account the possible interaction of these compounds on osteoclast metabolism to better understand the positive correlation reported between the consumption of fruit and vegetables and bone mass.


Bone | 2011

Differential effects of two citrus flavanones on bone quality in senescent male rats in relation to their bioavailability and metabolism.

Véronique Habauzit; Sandra Maria Sacco; Angel Gil-Izquierdo; Anna Trzeciakiewicz; Christine Morand; Denis Barron; Stéphane Pinaud; Elisabeth Offord; Marie-Noëlle Horcajada

The effect of hesperidin (Hp) and naringin (Nar), two major citrus flavanones, on the regulation of bone metabolism was examined in male senescent rats. Twenty -month -old gonad-intact male Wistar rats received a casein-based diet supplemented with or without either 0.5% hesperidin (Hp), 0.5% naringin (Nar) or a mix of both flavanones (Hp+Nar, 0.25% each). After 3 months, daily Hp intake significantly improved femoral bone integrity as reflected by improvements in total and regional bone mineral densities (BMD) (9.7%-12.3% improvements, p<0.05) and trabecular bone volume fraction (24.3% improvement, p<0.05) at the femur compared with control group. In contrast, naringin exerted site-specific effects on BMD (10.2% improvement at the distal metaphyseal area, p<0.05) and no further benefit to bone mass was observed with the mix of flavanones. Bone resorption (DPD) was significantly attenuated by Hp and Nar given alone (40.3% and 26.8% lower compared to control, p<0.05, respectively) but not by the mixture of the two. All treatments significantly reduced expression of inflammatory markers to a similar extent (IL-6, 81.0-87.9% reduction; NO, 34.7-39.5% reduction) compared to control. Bone formation did not appear to be strongly affected by any of the treatments (no effect on osteocalcin levels, modest modulation of tibial BMP-2 mRNA). However, as previously reported, plasma lipid-lowering effects were observed with Hp and Nar alone (34.1%-45.1% lower for total cholesterol and triglycerides compared to control, p<0.05) or together (46% lower for triglycerides, p<0.05). Surprisingly the plasma circulating level of naringin (8.15μM) was >5-fold higher than that of hesperidin (1.44μM) at equivalent doses (0.5%) and a linear reduction in plasma levels was observed upon co-administration (0.25% each) indicating absence of competition for their intestinal absorption sites and metabolism. The higher efficacy of Hp at a lower plasma concentration than naringin, as well as the identification of the major circulating metabolite of hesperidin (hesperetin-7-O-glucuronide) underlines the importance of flavanone bioavailability and metabolism in their biological efficacy and suggests a structure-function relationship in the mechanism of action of the active metabolites.


Journal of Agricultural and Food Chemistry | 2010

Molecular mechanism of hesperetin-7-O-glucuronide, the main circulating metabolite of hesperidin, involved in osteoblast differentiation.

Anna Trzeciakiewicz; Véronique Habauzit; Sylvie Mercier; Denis Barron; Mireia Urpi-Sarda; Claudine Manach; Elizabeth Offord; Marie-Noëlle Horcajada

Citrus fruit hesperidin is hydrolyzed by gut microflora into aglycone form (hesperetin) and then conjugated mainly into glucuronides. We previously demonstrated that hesperetin enhanced osteoblast differentiation. In this study, we examined the effect of hesperetin-7-O-glucuronide (Hp7G) on primary rat osteoblast proliferation and differentiation. The impact of Hp7G on specific bone signaling pathways was explored. Osteoblasts were exposed to physiological concentrations of 1 (Hp7G1) and 10 (Hp7G10) microM of conjugate. The glucuronide did not affect proliferation but enhanced differentiation by significantly increasing alkaline phosphatase (ALP) activity from day 14 of exposure. Hp7G significantly induced mRNA expression of ALP, Runx2, and Osterix after 48 h of exposure. Moreover, phosphorylation of Smad1/5/8 was enhanced by Hp7G, while ERK1/2 remained unchanged after 48 h. Hp7G decreased RANKL gene expression. These results suggest that Hp7G may regulate osteoblast differentiation through Runx2 and Osterix stimulation, and might be implicated in the regulation of osteoblast/osteoclast communication.


Journal of Nutritional Biochemistry | 2010

Hesperetin stimulates differentiation of primary rat osteoblasts involving the BMP signalling pathway.

Anna Trzeciakiewicz; Véronique Habauzit; Sylvie Mercier; Patrice Lebecque; Marie-Jeanne Davicco; Véronique Coxam; Christian Demigné; Marie-Noëlle Horcajada

Hesperidin found in citrus fruits has been reported to be a promising bioactive compound for maintaining an optimal bone status in ovariectomized rodent models. In this study, we examined the capacity of hesperetin (Hp) to affect the proliferation, differentiation and mineralization of rodent primary osteoblasts. Then, the impact of Hp on signalling pathways known to be implicated in bone formation was explored. We exposed osteoblasts to physiological concentrations of 1 microM Hp (Hp1) and 10 microM Hp (Hp10). Neither proliferation nor mineralization was affected by Hp at either dose during 19 days of exposure. Hp at both doses enhanced differentiation by significantly increasing alkaline phosphatase (ALP) activity from Day 14 of exposure (Day 19: Hp1: +9%, Hp10: +14.8% vs. control; P<.05). However, Hp did not induce an obvious formation of calcium nodules. The effect of Hp10 on ALP was inhibited by addition of noggin protein, suggesting a possible action of this flavanone through the bone morphogenetic protein (BMP) pathway. Indeed, Hp10 significantly induced (1.2- to 1.4-fold) mRNA expression of genes involved in this signalling pathway (i.e., BMP2, BMP4, Runx2 and Osterix) after 48 h of exposure. This was strengthened by enhanced phosphorylation of the complex Smad1/5/8. Osteocalcin mRNA level was up-regulated by Hp only at 10 microM (2.2 fold vs. control). The same dose of Hp significantly decreased osteopontin (OPN) protein level (50% vs. control) after 14 days of culture. Our findings suggest that Hp may regulate osteoblast differentiation through BMP signalling and may influence the mineralization process by modulating OPN expression.


The American Journal of Clinical Nutrition | 2015

Flavanones protect from arterial stiffness in postmenopausal women consuming grapefruit juice for 6 mo: a randomized, controlled, crossover trial

Véronique Habauzit; Marie-Anne Verny; Dragan Milenkovic; Nicolas Barber-Chamoux; Andrzej Mazur; Claude Dubray; Christine Morand

BACKGROUND The consumption of citrus fruits is associated with health benefits. However, clinical data regarding the effects of grapefruit flavanone consumption on vascular function are lacking. OBJECTIVE The objective of the present study was to address the role of flavanones in the long-term effects induced by grapefruit juice (GFJ) consumption on vascular function in healthy postmenopausal women. DESIGN Forty-eight healthy postmenopausal women aged 50-65 y within 3-10 y since menopause, a body mass index (in kg/m(2)) of 19-30, and a waist size >88 cm completed this double-blind, randomized, controlled, crossover trial. These volunteers were randomly assigned to consume 340 mL GFJ/d, providing 210 mg naringenin glycosides, or a matched control drink without flavanones for 6 mo each, with a 2-mo washout between beverages. The primary endpoint was the assessment of endothelial function in the brachial artery by using flow-mediated dilation. Blood pressure, arterial stiffness, and endothelial function in the peripheral arterial bed were also evaluated as indicators of vascular function. These measurements and blood collection for clinical biochemical markers were performed in overnight-fasted subjects before and after the 6-mo treatment periods. RESULTS The mean ± SD carotid-femoral pulse wave velocity, which reflects central aortic stiffness, was statistically significantly lower after consumption of GFJ (7.36 ± 1.15 m/s) than after consumption of the matched control drink without flavanones (7.70 ± 1.36 m/s), with a P value of 0.019 for the treatment effect. Endothelial function in macro- and microcirculation, blood pressure, anthropometric measures, glucose metabolism, and biomarkers of inflammation and oxidative stress were not affected by the intervention. CONCLUSIONS Regular GFJ consumption by middle-aged, healthy postmenopausal women is beneficial for arterial stiffness. This effect may be related to flavanones present in grapefruit. This trial was registered at clinicaltrials.gov as NCT01272167.


Pediatric Research | 2009

Dietary Protein Supplementation Increases Peak Bone Mass Acquisition in Energy-Restricted Growing Rats

Julie Mardon; Anna Trzeciakiewicz; Véronique Habauzit; Marie-Jeanne Davicco; Patrice Lebecque; Sylvie Mercier; Jean-Claude Tressol; Marie-Noëlle Horcajada; Christian Demigné; Véronique Coxam

Peak bone mass is a major determinant of osteoporosis pathogenesis during aging. Respective influences of energy and protein supplies on skeletal growth remains unclear. We investigated the effect of a 5-mo dietary restriction on bone status in young rats randomized into six groups (n = 10 per group). Control animals were fed a diet containing a normal (13%) (C-NP) or a high-protein content (26%) (C-HP). The other groups received a 40% protein energy-restricted diet (PER-NP and PER-HP) or a 40% energy-restricted diet (ER-NP and ER-HP). High-protein intake did not modulate bone acquisition, although a metabolic acidosis was induced and calcium retention impaired. PER and ER diets were associated with a decrease in femoral bone mineral density. The compensation for protein intake in energy-restricted conditions induced a bone sparing effect. Plasma osteocalcin (OC) and urinary deoxypyridinoline (DPD) assays revealed a decreased OC/DPD ratio in restricted rats compared with C animals, which was far more reduced in PER than in ER groups. Circulating IGF-1 levels were lowered by dietary restrictions. In conclusion, both energy and protein deficiencies may contribute to impairment in peak bone mass acquisition, which may affect skeleton strength and potentially render individuals more susceptible to osteoporosis.

Collaboration


Dive into the Véronique Habauzit's collaboration.

Top Co-Authors

Avatar

Marie-Noëlle Horcajada

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christine Morand

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Anna Trzeciakiewicz

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Patrice Lebecque

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Véronique Coxam

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marie-Jeanne Davicco

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Dragan Milenkovic

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sylvie Mercier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Angel Gil-Izquierdo

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge