Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Véronique Lods is active.

Publication


Featured researches published by Véronique Lods.


Archive for Rational Mechanics and Analysis | 1996

Asymptotic Analysis of Linearly Elastic Shells. III. Justification of Koiter's Shell Equations

Philippe G. Ciarlet; Véronique Lods

AbstractWe consider as in Part I a family of linearly elastic shells of thickness 2ɛ, all having the same middle surfaceS=ϕ(ϖ)⊂R3, whereω⊂R2 is a bounded and connected open set with a Lipschitz-continuous boundary, andϕ∈l3 (ϖ;R3). The shells are clamped on a portion of their lateral face, whose middle line isϕ(γ0), whereγ0 is any portion of∂ω withlength γ0>0. We make an essential geometrical assumption on the middle surfaceS and on the setγ0, which states that the space of inextensional displacements % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaieWacG% aGC9NvamacaY1gaaWcbGaGCHqaciacaYLFgbaabKaGCbGccGaGCjik% aiadaYfHjpWDcGaGCjykaiadaYLH9aqpieaajqgaadGaa03EaGGadO% Gamaiu8D7aOHGaaiadac1E9aqpcWaGqThkaGIamaiueE7aOnacac1g% aaWcbGaGqjacacLFPbaabKaGqbGccGaGqjykaiadacLHiiIZcGaGqn% isamacacfhaaWcbKaGqfacacLaiaiuigdaaaGccGaGqjikaiadacfH% jpWDcGaGqjykaiadacLHxdaTcGaGqnisamacacfhaaWcbKaGqfacac% LaiaiuigdaaaGccGaGqjikaiadacfHjpWDcGaGqjykaiadacLHxdaT% cGaGqnisamacacfhaaWcbKaGqfacacLaiaiuikdaaaGccGaGqjikai% adacfHjpWDcGaGqjykaiacacLG7aaabaGaa8hiaiaa-bcacaWFGaGa% a8hiaiaa-bcacaWFGaGaa8hiaiaa-bcacaWFGaGaa8hiaiaa-bcaca% WFGaGaa8hiaiadaseH3oaAdGaGeTbaaSqaiaircGaGe5xAaaqajair% aOGaiair-1dacWaGezOaIy7aiairBaaaleacasKaiGgi+zhaaeqcas% eakiad0HdH3oaAdGaGeTbaaSqaiaircGaGeH4maaqajairaOGaiair% -1dacGaGe9hiaiacasuFWaGaiair-bcacGaGe13BaiacasuFUbGaia% ir+bcacWaGer4SdC2aiairBaaaleacasKaiair+bdaaeqcaseakiac% asKGSaGamaireo7aNnacas0gaaWcbGaGejadCHdHXoqycWax4qOSdi% gabKaGebGccGaxejikaiadCreF3oaAcGaxejykaiadCrKH9aqpcGax% eHimaiacCruFGaGaiWfr9LgacGaxe1NBaiacCruFGaGamWfreM8a3L% azaamacGaxakyFaiacCbOGSaaaaaa!D00E!


Journal of Elasticity | 1996

Asymptotic analysis of linearly elastic shells : 'Generalized membrane shells'

Philippe G. Ciarlet; Véronique Lods


Journal of Elasticity | 1998

The Space of Inextensional Displacements for a Partially Clamped Linearly Elastic Shell with an Elliptic Middle Surface

Véronique Lods; Cristinel Mardare

\begin{gathered} V_F (\omega ) = \{ \eta = (\eta _i ) \in H^1 (\omega ) \times H^1 (\omega ) \times H^2 (\omega ); \hfill \\ \eta _i = \partial _v \eta _3 = 0 on \gamma _0 ,\gamma _{\alpha \beta } (\eta ) = 0 in \omega \} , \hfill \\ \end{gathered}


Journal de Mathématiques Pures et Appliquées | 1996

On the ellipticity of linear membrane shell equations

Philippe G. Ciarlet; Véronique Lods


Archive for Rational Mechanics and Analysis | 1998

Nonlinearly Elastic Shell Models: A Formal Asymptotic Approach II. The Flexural Model

Véronique Lods; Bernadette Miara

where % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS% baaSqaaiad4WiHXoqycWaomsOSdigabeaaaaa!3C98!


Asymptotic Analysis | 2002

A justification of linear Koiter and Naghdi's models for totally clamped shell

Véronique Lods; Cristinel Mardare


Asymptotic Analysis | 2001

Error estimates between the linearized three-dimensional shell equations and Naghdi's model

Véronique Lods; Cristinel Mardare

\gamma _{\alpha \beta }


Comptes Rendus De L Academie Des Sciences Serie I-mathematique | 2001

Justification des modèles linéaires de Koiter et de Naghdi pour des coques totalement encastrées soumises à des forces «non admissibles »

Véronique Lods; Cristinel Mardare


Comptes Rendus De L Academie Des Sciences Serie I-mathematique | 1998

Justification asymptotique des hypothèses de Kirchhoff-Love pour une coque encastrée linéairement élastique

Véronique Lods; Cristinel Mardare

(η) are the components of the linearized change is metric tensor ofS, contains non-zero functions. This assumption is satisfied in particular ifS is a portion of cylinder andϕ(γ0) is contained in a generatrix ofS.We show that, if the applied body force density isO(ɛ2) with respect toɛ, the fieldu(ɛ)=(ui(ɛ)), whereui(ɛ) denote the three covariant components of the displacement of the points of the shell given by the equations of three-dimensional elasticity, once “scaled” so as to be defined over the fixed domain Ω=ω×]−1, 1[, converges asɛ→0 inH1(Ω) to a limitu, which is independent of the transverse variable. Furthermore, the averageζ=1/2ts−11udx3, which belongs to the spaceVF(ω), satisfies the (scaled) two-dimensional equations of a “flexural shell”, viz., % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaiaiMlaaabG% aGykacaIjIXaaabGaGykacaIjIZaaaamacWY7fqaqaialViiGajqga% GgGamaiGmaafb83kIipajeaObGaS8kadaciF-dpaeM8a3bWcbKaS8c% GccGaGacaaKdWGHbWaiaiGaaa5aWbaaSqajaiGaaa5aeacaciaaqoa% cWaGacaaKdaHXoqycWaGacaaKdaHYoGycWaGacaaKdaHdpWCcWaGac% aaKdaHepaDaaGccWaGacaaKdaHbpGCdGaGacaaKdWgaaWcbGaGacaa% KdGamaiGaaa5aq4WdmNamaiGaaa5aqiXdqhabKaGacaaKdaakiacac% iaaqoacIcaiiWacWaGacaaKdGF2oGEcGaGacaaKdGGPaGamaiGaaa5% aqyWdi3aiaiGaaa5aSbaaSqaiaiGaaa5aiadaciaaqoaeg7aHjadac% iaaqoaek7aIbqajaiGaaa5aaGccGaGacaaKdGGOaGamaiGaaa5aq4T% dGMaiaiGaaa5aiykamacacijaapakaaabGaGascaWdGaiaiGKaa8am% yyaGqaaiacacijaapa9bcaaSqajaiGKaa8aaacbiGccGaGascaWdaF% KbGaiaiGKaa8aWxEaiadaciaaGkag2da9macacipaWjaxababGaGaY% daCcqcKbaObiadaci6-dpa-TIiYdqcbaAaiaiG8aaNaiadacit-Zma% eM8a3bWcbKaGaYdaCcaakmaacmaajqgaGgqaaOWaiaiG8aaibCbmaK% azaaAabGaGaYdaGeGamaiG8aaib83kIipaleacacipaasaiiaacWaG% aIeaydWEsislcWaGaIeaydWEXaqmaeacacipaasacWaGaYmaGeWEXa% qmaaGccGaDSpOzamac0XohaaWcbKaDShac0XUaiqh7dMgaaaGccGaD% Spizaiac0X+G4bWaiqh7Baaaleac0XUaiqh7iodaaeqc0XoaaOGaay% 5Eaiaaw2haaiaa9bcacWaGut4TdG2aiai1BaaaleacasTaiai18Lga% aeqcasnakmacasTcaaqaiai1cGaGupyyaiacasDFGaaaleqcasnaki% acasnFKbGaiai18Lhaaaa!02F0!


Comptes Rendus De L Academie Des Sciences Serie I-mathematique | 1997

Détermination de l'espace inextensionnel d'une coque linéairement élastique, partiellement encastrée et de surface moyenne uniformément elliptique

Véronique Lods; Cristinel Mardare

Collaboration


Dive into the Véronique Lods's collaboration.

Top Co-Authors

Avatar

Philippe G. Ciarlet

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernadette Miara

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge