Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Véronique Noé is active.

Publication


Featured researches published by Véronique Noé.


International Journal of Cancer | 2006

Pentose phosphate cycle oxidative and nonoxidative balance: A new vulnerable target for overcoming drug resistance in cancer.

Antonio Ramos-Montoya; Wai-Nang P. Lee; Sara Bassilian; Shu Lim; Raisa V. Trebukhina; Maria V. Kazhyna; Carlos J. Ciudad; Véronique Noé; Josep J. Centelles; Marta Cascante

The metabolic network of cancer cells confers adaptive mechanisms against many chemotherapeutic agents, but also presents critical constraints that make the cells vulnerable to perturbation of the network due to drug therapy. To identify these fragilities, combination therapies based on targeting the nucleic acid synthesis metabolic network at multiple points were tested. Results showed that cancer cells overcome single hit strategies through different metabolic network adaptations, demonstrating the robustness of cancer cell metabolism. Analysis of these adaptations also identified the maintenance of pentose phosphate cycle oxidative and nonoxidative balance to be critical for cancer cell survival and vulnerable to chemotherapeutic intervention. The vulnerability of cancer cells to the imbalance on pentose phosphate cycle was demonstrated by phenotypic phase plane analysis.


Journal of Neurochemistry | 2004

Up-regulation of the Kv3.4 potassium channel subunit in early stages of Alzheimer's disease.

Ester Angulo; Véronique Noé; Vicent Casadó; Josefa Mallol; Teresa Gomez-Isla; Carmen Lluis; Isidre Ferrer; Carlos J. Ciudad; Rafael Franco

Gene expression throughout the different stages of Alzheimers disease was analysed in samples from cerebral cortex. The gene encoding the voltage‐gated potassium channel Kv3.4 was already overexpressed in early stages of the disease, and in advanced stages Kv3.4 was present at high levels in neurodegenerative structures. This subunit regulates delayed‐rectifier currents, which are primary determinants of spike repolarization in neurones. In unique samples from a patient with Alzheimers disease whose amount of amyloid plaques was decreased by β amyloid immunization, Kv3.4 was overexpressed. The channel subunit was expressed in the neuropil, in the remaining conventional plaques in the frontal cortex and in collapsed plaques in the orbitary cortex. Therefore, amyloid deposition in plaques does not seem to be responsible for the increase in Kv3.4 levels. Nevertheless, Kv3.4 up‐regulation is related to amyloid pathology, given that transgenic mice with the Swedish mutation of amyloid precursor protein showed increased expression of Kv3.4. Up‐regulation of voltage‐gated potassium channel subunits alters potassium currents in neurones and leads to altered synaptic activity that may underlie the neurodegeneration observed in Alzheimers disease. Thus, Kv3.4 likely represents a novel therapeutic target for the disease.


Oligonucleotides | 2004

Use of siRNAs and Antisense Oligonucleotides Against Survivin RNA to Inhibit Steps Leading to Tumor Angiogenesis

Silvia Coma; Véronique Noé; Cinzia Lavarino; Jaume Adan; Manuel Rivas; Mariana López-Matas; Roser Pagan; Francesc Mitjans; Senén Vilaró; Jaume Piulats; Carlos J. Ciudad

The antiapoptotic protein survivin is an attractive target in cancer therapy because it is expressed differently in tumors and normal tissues and it is potentially required for cancer cells to remain viable. Given that survivin is also overexpressed in endothelial cells (ECs) of newly formed blood vessels found in tumors, its RNA targeting might compromise EC viability and interfere with tumor angiogenesis. We used two antisense strategies against survivin expression, antisense oligonucleotides (aODN) and small interfering RNA (siRNA), to study in ECs the contribution of survivin in various steps leading to tumor angiogenesis. A 21-mer phosphorothioate aODN and two siRNA oligonucleotides against survivin mRNA were designed to downregulate survivin expression. Survivin targeting caused (1) a strong growth-inhibitory effect, (2) a 4-fold increase in apoptosis, (3) an accumulation of cells in the S phase and a decrease in G2/M phase, (4) a dose-dependent inhibition of EC migration on Vitronectin, and (5) a decrease in capillary formation. Control oligonucleotides, an unrelated oligonucleotide, and one with four mismatches, had no significant effect. All these results show that survivin is a suitable target in cancer therapy because its inhibition in EC causes both a proapoptotic effect and an interruption of tumor angiogenesis. The two strategies used, classic aODN and siRNA technology, were very effective. Moreover, the latter can be used in the low nanomolar range, thus increasing the sensitivity of the treatment.


Oncogene | 1998

Retinoblastoma protein associates with SP1 and activates the hamster dihydrofolate reductase promoter

Véronique Noé; Cristina Alemany; Lawrence A. Chasin; Carlos J. Ciudad

The dihydrofolate reductase (dhfr) promoter is powerfully activated by the transcription factor Sp1. It has been suggested that Sp1 is a potential target for transcriptional regulation by the cell cycle regulator retinoblastoma protein (Rb), and so we have explored this possibility using the hamster dhfr gene as a model. By the use of DNA probes from the hamster dhfr gene promoter, containing the most proximal GC box (minimal promoter), and nuclear extracts from cultured hamster cells (CHO K1), we show that polyclonal and monoclonal antibodies against Rb supershift the binding of Sp1. Nuclear extract immunoprecipitation with anti-Rb followed by Western analysis using anti-Sp1 also shows that Rb is complexed to Sp1. Complementary Immunoprecipitation/WB analysis shows both forms of Rb protein in the anti-Sp1 immunoprecipitates. Moreover, nuclear extract immunodepletion of Rb abolishes Sp1 gel-shift. The interaction between Rb and Sp1 is maintained in all the phases of the cell cycle. Transient overexpression of Rb in dhfr negative cells co-transfected with a dhfr minigene driven by its minimal promoter increases DHFR activity and potentiates transcription when overexpressing Sp1. Both effects are severely reduced when the co-transfections are performed with a homologous dhfr minigene containing a single point mutation in the GC box. Thus, the activation by Rb of the dhfr gene may be exerted through Sp1. Stable transfectants of pCMVRb in K1 cells show an increase in both mRNA and DHFR activity. It is concluded that Sp1 is physically associated with Rb, and that this association increases Sp1-mediated transcription of the hamster dhfr gene.


Cell Cycle | 2008

Regulation of Sp1 by cell cycle related proteins.

Alicia Tapias; Carlos J. Ciudad; Igor B. Roninson; Véronique Noé

Sp1 transcription factor regulates the expression of multiple genes, including the Sp1 gene itself. We analyzed the ability of different cell cycle regulatory proteins to interact with Sp1 and to affect Sp1 promoter activity. Using an antibody array, we observed that CDK4, SKP2, Rad51, BRCA2 and p21 could interact with Sp1 and we confirmed these interactions by co-immunoprecipitation. CDK4, SKP2, Rad51, BRCA2 and p21 also activated the Sp1 promoter. Among the known Sp1-interacting proteins, E2F-DP1, Cyclin D1, Stat3 and Rb activated the Sp1 promoter, whereas p53 and NFkB inhibited it. The proteins that regulated Sp1 gene expression were shown by positive chromatin immunoprecipitation to be bound to the Sp1 promoter. Moreover, SKP2, BRCA2, p21, E2F-DP1, Stat3, Rb, p53 and NFkB had similar effects on an artificial promoter containing only Sp1 binding sites. Transient transfections of CDK4, Rad51, E2F-DP1, p21 and Stat3 increased mRNA expression from the endogenous Sp1 gene in HeLa cells whereas overexpression of NFkB, and p53 decreased Sp1 mRNA levels . p21 expression from a stably integrated inducible promoter in HT1080 cells activated Sp1 expression at the promoter and mRNA levels, but at the same time it decreased Sp1 protein levels due to the activation of Sp1 degradation. The observed multiple effects of cell cycle regulators on Sp1 suggest that Sp1 may be a key mediator of cell cycle associated changes in gene expression.


Biochemical Pharmacology | 2011

Underexpression of miR-224 in methotrexate resistant human colon cancer cells

Núria Mencia; Elisabet Selga; Véronique Noé; Carlos J. Ciudad

MicroRNAs (miRNAs) are small non-coding RNAs involved in RNA silencing that play a role in many biological processes. They are involved in the development of many diseases, including cancer. Extensive experimental data show that they play a role in the pathogenesis of cancer as well as the development of drug resistance during treatments. The aim of this work was to detect differentially expressed miRNAs in MTX-resistant cells. Thus, miRNA microarrays of sensitive and MTX-resistant HT29 colon cancer cells were performed. The results were analyzed using the GeneSpring GX11.5 software. Differentially expressed miRNAs in resistant cells were identified and miR-224, which was one of the most differentially expressed miRNAs and with high raw signal values, was selected for further studies. The underexpression of miR-224 was also observed in CaCo-2 and K562 cells resistant to MTX. Putative targets were predicted using TargetScan 5.1 software and integrated with the data from expression microarrays previously performed. This approach allowed us to identify miR-224 targets that were differentially expressed more than 2-fold in resistant cells. Among them CDS2, DCP2, HSPC159, MYST3 and SLC4A4 were validated at the mRNA level by qRT-PCR. Functional assays using an anti-miR against miR-224 desensitized the cells towards MTX, mimicking the resistant phenotype. On the other hand, siRNA treatment against SLC4A4 or incubation of Poly Purine Reverse Hoogsteen (PPRH) hairpins against CDS2 or HSPC159 increased sensitivity to MTX. These results revealed a role for miR-224 and its targets in MTX resistance in HT29 colon cancer cells.


PLOS ONE | 2013

Therapeutic Targeting of Tumor Growth and Angiogenesis with a Novel Anti-S100A4 Monoclonal Antibody

Jose Luis Hernández; Laura Padilla; Sheila Dakhel; Toni Coll; Rosa Hervas; Jaume Adan; Marc Masa; Francesc Mitjans; Josep Maria Martínez; Silvia Coma; Laura Rodríguez; Véronique Noé; Carlos J. Ciudad; Francesc Blasco; Ramon Messeguer

S100A4, a member of the S100 calcium-binding protein family secreted by tumor and stromal cells, supports tumorigenesis by stimulating angiogenesis. We demonstrated that S100A4 synergizes with vascular endothelial growth factor (VEGF), via the RAGE receptor, in promoting endothelial cell migration by increasing KDR expression and MMP-9 activity. In vivo overexpression of S100A4 led to a significant increase in tumor growth and vascularization in a human melanoma xenograft M21 model. Conversely, when silencing S100A4 by shRNA technology, a dramatic decrease in tumor development of the pancreatic MiaPACA-2 cell line was observed. Based on these results we developed 5C3, a neutralizing monoclonal antibody against S100A4. This antibody abolished endothelial cell migration, tumor growth and angiogenesis in immunodeficient mouse xenograft models of MiaPACA-2 and M21-S100A4 cells. It is concluded that extracellular S100A4 inhibition is an attractive approach for the treatment of human cancer.


Genome Medicine | 2009

Networking of differentially expressed genes in human cancer cells resistant to methotrexate

Elisabet Selga; Carlota Oleaga; Sara Ramírez; M. Cristina de Almagro; Véronique Noé; Carlos J. Ciudad

BackgroundThe need for an integrated view of data obtained from high-throughput technologies gave rise to network analyses. These are especially useful to rationalize how external perturbations propagate through the expression of genes. To address this issue in the case of drug resistance, we constructed biological association networks of genes differentially expressed in cell lines resistant to methotrexate (MTX).MethodsSeven cell lines representative of different types of cancer, including colon cancer (HT29 and Caco2), breast cancer (MCF-7 and MDA-MB-468), pancreatic cancer (MIA PaCa-2), erythroblastic leukemia (K562) and osteosarcoma (Saos-2), were used. The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. Genes deregulated in common between the different cancer cell lines served to generate biological association networks using the Pathway Architect software.ResultsDikkopf homolog-1 (DKK1) is a highly interconnected node in the network generated with genes in common between the two colon cancer cell lines, and functional validations of this target using small interfering RNAs (siRNAs) showed a chemosensitization toward MTX. Members of the UDP-glucuronosyltransferase 1A (UGT1A) family formed a network of genes differentially expressed in the two breast cancer cell lines. siRNA treatment against UGT1A also showed an increase in MTX sensitivity. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) was overexpressed among the pancreatic cancer, leukemia and osteosarcoma cell lines, and siRNA treatment against EEF1A1 produced a chemosensitization toward MTX.ConclusionsBiological association networks identified DKK1, UGT1A s and EEF1A1 as important gene nodes in MTX-resistance. Treatments using siRNA technology against these three genes showed chemosensitization toward MTX.


BMC Medical Genomics | 2008

Role of caveolin 1, E-cadherin, Enolase 2 and PKCalpha on resistance to methotrexate in human HT29 colon cancer cells.

Elisabet Selga; Cristina Morales; Véronique Noé; Miguel A. Peinado; Carlos J. Ciudad

BackgroundMethotrexate is one of the earliest cytotoxic drugs used in cancer therapy, and despite the isolation of multiple other folate antagonists, methotrexate maintains its significant role as a treatment for different types of cancer and other disorders. The usefulness of treatment with methotrexate is limited by the development of drug resistance, which may be acquired through different ways. To get insights into the mechanisms associated with drug resistance and sensitization we performed a functional analysis of genes deregulated in methotrexate resistant cells, either due to its co-amplification with the dhfr gene or as a result of a transcriptome screening using microarrays.MethodsGene expression levels were compared between triplicate samples from either HT29 sensitive cells and resistant to 10-5 M MTX by hybridization to the GeneChip® HG U133 PLUS 2.0 from Affymetrix. After normalization, a list of 3-fold differentially expressed genes with a p-value < 0.05 including multiple testing correction (Benjamini and Hochberg false discovery rate) was generated. RT-Real-time PCR was used to validate the expression levels of selected genes and copy-number was determined by qPCR. Functional validations were performed either by siRNAs or by transfection of an expression plasmid.ResultsGenes adjacent to the dhfr locus and included in the 5q14 amplicon were overexpressed in HT29 MTX-resistant cells. Treatment with siRNAs against those genes caused a slight reduction in cell viability in both HT29 sensitive and resistant cells. On the other hand, microarray analysis of HT29 and HT29 MTX resistant cells unveiled overexpression of caveolin 1, enolase 2 and PKCα genes in resistant cells without concomitant copy number gain. siRNAs against these three genes effectively reduced cell viability and caused a decreased MTX resistance capacity. Moreover, overexpression of E-cadherin, which was found underexpressed in MTX-resistant cells, also sensitized the cells toward the chemotherapeutic agent. Combined treatments targeting siRNA inhibition of caveolin 1 and overexpression of E-cadherin markedly reduced cell viability in both sensitive and MTX-resistant HT29 cells.ConclusionWe provide functional evidences indicating that caveolin 1 and E-cadherin, deregulated in MTX resistant cells, may play a critical role in cell survival and may constitute potential targets for coadjuvant therapy.


Journal of Nutrition | 2011

A Lyophilized Red Grape Pomace Containing Proanthocyanidin-Rich Dietary Fiber Induces Genetic and Metabolic Alterations in Colon Mucosa of Female C57BL/6J Mice

Daneida Lizárraga; M. Pilar Vinardell; Véronique Noé; Joost H.M. van Delft; Gema Alcarraz-Vizán; Simone G. van Breda; Y.C.M. Staal; Ulrich L. Günther; Michelle Reed; Carlos J. Ciudad; Josep Lluís Torres; Marta Cascante

Diet plays a decisive role in promoting or preventing colon cancer. However, the specific effects of some nutrients remain unclear. The capacity of fruit and vegetables to prevent cancer has been associated with their fiber and antioxidant composition. We investigated whether consumption of a lyophilized red grape pomace containing proanthocyanidin-rich dietary fiber (grape antioxidant dietary fiber, GADF) by female C57BL/6J mice would affect the serum metabolic profile or colon mucosa gene expression using NMR techniques and DNA microarray, respectively. The mice were randomly assigned to 2 groups that for 2 wk consumed a standard rodent diet and were gavaged with 100 mg/kg body weight GADF suspended in water or an equivalent volume of plain tap water (10 mL/kg body weight). The amount of fiber supplemented was calculated to equal the current recommended daily levels of fiber consumption for humans. The inclusion of dietary GADF induced alterations in the expression of tumor suppressor genes and proto-oncogenes as well as the modulation of genes from pathways, including lipid biosynthesis, energy metabolism, cell cycle, and apoptosis. Overexpression of enzymes pertaining to the xenobiotic detoxifying system and endogenous antioxidant cell defenses was also observed. In summary, the genetic and metabolic profiles induced by GADF were consistent with the preventive effects of fiber and polyphenols. On the basis of these observations, we propose that GADF may contribute to reducing the risk of colon cancer.

Collaboration


Dive into the Véronique Noé's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Solé

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge