Véronique Rigot
Aix-Marseille University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Véronique Rigot.
International Journal of Cancer | 1999
Franck Carreiras; Véronique Rigot; Séverine Cruet; Frédéric André; Pascal Gauduchon; Jacques Marvaldi
Cell migration of ovarian tumoral cells is essential for cell dissemination and for invasion of the submesothelial extracellular matrix (ECM). We have conducted a study of the migratory properties of an ovarian adenocarcinoma cell line (IGROV1) by using 2 distinct methods for the evaluation of cell migration. We found that in a short‐term transfilter migration assay, IGROV1 cells migrated toward vitronectin, fibronectin, type IV collagen and laminin in an integrin‐dependent manner. When migration was evaluated in a wound healing assay, the restitution of the wounded area was stimulated solely by added, exogenous vitronectin and was almost totally dependent on αvβ3 integrin function. Moreover, we demonstrated that αvβ3 was localized in focal contacts restricted to the leading edge of migrating cells, whereas vitronectin notably localized with actin stress fibers and cortical actin. On the other hand, several kinase inhibitors were found to impede migration of IGROV1 induced by vitronectin. It thus appears that αvβ3–vitronectin interactions lead to the activation of multiple signaling pathway including activation of protein kinase C, phosphatidyl‐inositol‐3‐phosphate kinase and protein tyrosine kinase. The “αvβ3–vitronectin system” is therefore essential to the migration of human ovarian carcinoma cells.Int. J. Cancer 80:285–294, 1999.
American Journal of Pathology | 2009
Estelle Delamarre; Salma Taboubi; Sylvie Mathieu; Caroline Berenguer; Véronique Rigot; Jean-Claude Lissitzky; Dominique Figarella-Branger; L'Houcine Ouafik; José Luis
The integrin alpha6beta1 and its main ligand laminin-111 are overexpressed in glioblastoma, as compared with normal brain tissue, suggesting they may be involved in glioblastoma malignancy. To address this question, we stably expressed the alpha6 integrin subunit in the U87 cell line via retroviral-mediated gene transfer. We show that cell surface expression of the alpha6beta1 integrin led to dramatic changes in tumor U87 cell behavior, both in vitro and in vivo. Nude mice receiving either subcutaneous or intracerebral inoculation of alpha6beta1-expressing cells developed substantially more voluminous tumors than mice injected with control cells. The difference in tumor growth was associated with a marked increase in vascularization in response to alpha6beta1 integrin expression and may also be related to changes in the balance between cell proliferation and survival. Indeed, expression of alpha6beta1 enhanced proliferation and decreased apoptosis of U87 cells both in the tumor and in vitro. Additionally, we demonstrate that alpha6beta1 is implicated in glioblastoma cell migration and invasion and that laminin-111 might mediate dissemination of alpha6beta1-positive cells in vivo. Our results highlight for the first time the considerable role of the integrin alpha6beta1 in glioma progression.
PLOS ONE | 2011
Alexandra Canonici; Carole Siret; Emilie Pellegrino; Rodolphe Pontier-Bres; Laurent Pouyet; Marie Pierre Montero; Carole Colin; Dorota Czerucka; Véronique Rigot; Frédéric André
Intestinal epithelial cell damage is frequently seen in the mucosal lesions of inflammatory bowel diseases such as ulcerative colitis or Crohns disease. Complete remission of these diseases requires both the cessation of inflammation and the migration of enterocytes to repair the damaged epithelium. Lyophilized Saccharomyces boulardii (Sb, Biocodex) is a nonpathogenic yeast widely used as a therapeutic agent for the treatment and prevention of diarrhea and other gastrointestinal disorders. In this study, we determined whether Sb could accelerate enterocyte migration. Cell migration was determined in Sb force-fed C57BL6J mice and in an in vitro wound model. The impact on α2β1 integrin activity was assessed using adhesion assays and the analysis of α2β1 mediated signaling pathways both in vitro and in vivo. We demonstrated that Sb secretes compounds that enhance the migration of enterocytes independently of cell proliferation. This enhanced migration was associated with the ability of Sb to favor cell-extracellular matrix interaction. Indeed, the yeast activates α2β1 integrin collagen receptors. This leads to an increase in tyrosine phosphorylation of cytoplasmic molecules, including focal adhesion kinase and paxillin, involved in the integrin signaling pathway. These changes are associated with the reorganization of focal adhesion structures. In conclusion Sb secretes motogenic factors that enhance cell restitution through the dynamic regulation of α2β1 integrin activity. This could be of major importance in the development of novel therapies targeting diseases characterized by severe mucosal injury, such as inflammatory and infectious bowel diseases.
Histochemistry and Cell Biology | 2000
Stéphane Honoré; Véronique Pichard; Claude Penel; Véronique Rigot; Charles Prévôt; Jacques Marvaldi; Claudette Briand; Jean-Baptiste Rognoni
Abstract. We investigated in a colon adenocarcinoma cell line, the exclusive role of extracellular matrix (ECM) components in the absence of soluble factors regarding the integrin clustering processes, and their implication in cell adhesion, spreading and organization of the actin cytoskeleton. Caco-2 cells were shown to express at the plasma membrane 11 integrins, some of which (e.g. α3β1, α5β1, α6β1/β4, α8β1 and αvβ1/β5/β6) were identified for the first time in this cell line. Cell adhesion and spreading processes were governed essentially by lamellipodium, the regulation of which was shown to be induced by two types of integrin clustering processes mediated by ECM proteins alone. During these phenomena, α2β1, αvβ6 and α6β1 integrins, the Caco-2 cell specific receptors of type IV collagen, fibronectin and laminin, respectively, were clustered in small focal complexes (point contacts), whereas αvβ5, the vitronectin receptor in this cell line, was aggregated in focal adhesions. The two levels of integrin clustering induced only F-actin cortical web formation organized in thin radial and/or circular filaments. We conclude thus that ECM components per se through their action on integrin clustering are involved in cell adhesion, cortical actin cytoskeleton organization and cell spreading.
Experimental Cell Research | 2009
Céline Defilles; Jean-Claude Lissitzky; Marie-Pierre Montero; Frédéric André; Charles Prévôt; Estelle Delamarre; Naziha Marrakchi; José Luis; Véronique Rigot
Crosstalk between integrins is involved in the regulation of various cell functions including cell migration. Here we identify the interplay between the integrins alphavbeta5/beta6 and alpha2beta1 during cell migration toward type I collagen. Human colon cancer cell lines HT29-D4 and SW480 were used as cell models. To improve our understanding of the consequences of alphavbeta5/beta6 function on alpha2beta1, we decreased the expression of alphav integrins by either siRNA or lysosomal targeting strategies or inhibited their function using, as antagonists, blocking antibodies or disintegrins. In all cases, we observed a greatly enhanced alpha2beta1 integrin-dependent cell migration associated with focal adhesion rearrangements and increased outside-in signaling as demonstrated by elevated phosphorylation of focal adhesion kinase and MAPKinase (ERK1 and ERK2). The alphavbeta5/beta6-dependent limitation of alpha2beta1 function could be overridden by TS2/16, an activating anti-beta1 antibody. Interestingly, compared to control cells, the pharmacological inhibition of PI3Kinase or the siRNA-mediated knockdown of AKT had little effect on the high alpha2beta1-mediated cell migration observed in the absence of alphav integrins or following activation of alpha2beta1 integrins by the TS2/16. These results suggest that integrins alphavbeta5/beta6 repress alpha2beta1 possibly by interfering with their activation process and thereby modify the cell signaling regulation of alpha2beta1-mediated migration.
PLOS ONE | 2012
Alexandra Canonici; Emilie Pellegrino; Carole Siret; Chloé Terciolo; Dorota Czerucka; Sonia Bastonero; Jacques Marvaldi; Dominique Lombardo; Véronique Rigot; Frédéric André
Intestinal epithelial cell damage is frequently seen in the mucosal lesions of infectious or inflammatory bowel diseases such as ulcerative colitis or Crohns disease. Complete remission of these diseases requires both the disappearance of inflammation and the repair of damaged epithelium. Saccharomyces boulardii (Sb, Biocodex) is a non-pathogenic yeast widely used as a preventive and therapeutic probiotic for the prevention and treatment of diarrhea and other gastrointestinal disorders. We recently showed that it enhances the repair of intestinal epithelium through activation of α2β1 integrin collagen receptors. In the present study, we demonstrated that α2β1 integrin is not the sole cell-extracellular matrix receptor involved during Sb-mediated intestinal restitution. Indeed, by using cell adhesion assays, we showed that Sb supernatant contains heat sensitive molecule(s), with a molecular weight higher than 9 kDa, which decreased αvβ5 integrin-mediated adhesion to vitronectin by competing with the integrin. Moreover, Sb-mediated changes in cell adhesion to vitronectin resulted in a reduction of the αvβ5signaling pathway. We used a monolayer wounding assay that mimics in vivo cell restitution to demonstrate that down-modulation of the αvβ5 integrin-vitronectin interaction is related to Sb-induced cell migration. We therefore postulated that Sb supernatant contains motogenic factors that enhance cell restitution through multiple pathways, including the dynamic fine regulation of αvβ5 integrin binding activity. This could be of major importance in diseases characterized by severe mucosal injury, such as inflammatory and infectious bowel diseases.
Biology of the Cell | 2011
Céline Defilles; Marie-Pierre Montero; Jean-Claude Lissitzky; Sophie Rome; Carole Siret; José Luis; Frédéric André; Véronique Rigot
Background information. Previous studies have reported that cross‐talk between integrins may be an important regulator of integrin—ligand binding and subsequent signalling events that control a variety of cell functions in many tissues. We previously demonstrated that αvβ5/β6 integrin represses α2β1‐dependent cell migration. The αv subunits undergo an endoproteolytic cleavage by protein convertases, whose role in tumoral invasion has remained controversial.
Journal of Crohns & Colitis | 2017
Chloé Terciolo; Aurélie Dobric; Mehdi Ouaissi; Carole Siret; Gilles Breuzard; Françoise Silvy; Bastien Marchiori; Sébastien Germain; Rénaté Bonier; Adel Hama; Róisín M. Owens; Dominique Lombardo; Véronique Rigot; Frédéric André
Background and Aims Alteration in intestinal permeability is the main factor underlying the pathogenesis of many diseases affecting the gut, such as inflammatory bowel disease [IBD]. Characterization of molecules targeting the restoration of intestinal barrier integrity is therefore vital for the development of alternative therapies. The yeast Saccharomyces boulardii CNCM I-745 [Sb], used to prevent and treat antibiotic-associated infectious and functional diarrhea, may have a beneficial effect in the treatment of IBD. Methods We analyzed the impact of Sb supernatant on tissue integrity and components of adherens junctions using cultured explants of colon from both IBD and healthy patients. To evaluate the pathways by which Sb regulates the expression of E-cadherin at the cell surface, we developed in vitro assays using human colonic cell lines, including cell aggregation, a calcium switch assay, real-time measurement of transepithelial electrical resistance [TEER] and pulse-chase experiments. Results We showed that Sb supernatant treatment of colonic explants protects the epithelial morphology and maintains E-cadherin expression at the cell surface. In vitro experiments revealed that Sb supernatant enhances E-cadherin delivery to the cell surface by re-routing endocytosed E-cadherin back to the plasma membrane. This process, involving Rab11A-dependent recycling endosome, leads to restoration of enterocyte adherens junctions, in addition to the overall restoration and strengthening of intestinal barrier function. Conclusion These findings open new possibilities of discovering novel options for prevention and therapy of diseases that affect intestinal permeability.
OncoImmunology | 2018
Aurélie Collignon; Françoise Silvy; Stéphane Robert; Malika Trad; Sébastien Germain; Jérémy Nigri; Frédéric André; Véronique Rigot; Richard Tomasini; Bernard Bonnotte; Dominique Lombardo; Eric Mas; Evelyne Beraud
ABSTRACT Pancreatic adenocarcinoma (PAC) has a poor prognosis. One treatment approach, investigated here, is to reinforce antitumor immunity. Dendritic cells (DCs) are essential for the development and regulation of adaptive host immune responses against tumors. A major role for DCs may be as innate tumoricidal effector cells. We explored the efficacy of vaccination with immature (i)DCs, after selecting optimal conditions for generating immunostimulatory iDCs. We used two models, C57BL/6Jrj mice with ectopic tumors induced by the PAC cell line, Panc02, and genetically engineered (KIC) mice developing PAC. Therapeutic iDC-vaccination resulted in a significant reduction in tumor growth in C57BL/6Jrj mice and prolonged survival in KIC mice. Prophylactic iDC-vaccination prevented subcutaneous tumor development. These protective effects were long-lasting in Panc02-induced tumor development, but not in melanoma. iDC-vaccination impacted the immune status of the hosts by greatly increasing the percentage of CD8+ T-cells, and natural killer (NK)1.1+ cells, that express granzyme B associated with Lamp-1 and IFN-γ. Efficacy of iDC-vaccination was CD8+ T-cell-dependent but NK1.1+ cell-independent. We demonstrated the ability of DCs to produce peroxynitrites and to kill tumor cells; this killing activity involved peroxynitrites. Altogether, these findings make killer DCs the pivotal actors in the beneficial clinical outcome that accompanies antitumor immune responses. We asked whether efficacy can be improved by combining DC-vaccination with the FOLFIRINOX regimen. Combined treatment significantly increased the lifespan of KIC mice with PAC. Prolonged treatment with FOLFIRINOX clearly augmented this beneficial effect. Combining iDC-vaccination with FOLFIRINOX may therefore represent a promising therapeutic option for patients with PAC.
British Journal of Cancer | 2018
Carole Siret; Aurélie Dobric; Anna Martirosyan; Chloé Terciolo; Sébastien Germain; Rénaté Bonier; Thassadite Dirami; Nelson Dusetti; Richard Tomasini; Marion Rubis; Stéphane Garcia; Juan L. Iovanna; Dominique Lombardo; Véronique Rigot; Frédéric André
Background:Pancreatic ductal adenocarcinoma (PDAC) is characterised by an extensive tissue invasion and an early formation of metastasis. Alterations in the expression of cadherins have been reported in PDAC. Yet, how these changes contribute to tumour progression is poorly understood. Here, we investigated the relationship between cadherins expression and PDAC development.Methods:Cadherins expression was assessed by immunostaining in both human and murine tissue specimens. We have generated pancreatic cancer cell lines expressing both cadherin-1 and cadherin-3 or only one of these cadherins. Functional implications of such genetic alterations were analysed both in vitro and in vivo.Results:Cadherin-3 is detected early at the plasma membrane during progression of pancreatic intraepithelial neoplasia 1 (PanIN-1) to PDAC. Despite tumoural cells turn on cadherin-3, a significant amount of cadherin-1 remains expressed at the cell surface during tumourigenesis. We found that cadherin-3 regulates tumour growth, while cadherin-1 drives type I collagen organisation in the tumour. In vitro assays showed that cadherins differentially participate to PDAC aggressiveness. Cadherin-3 regulates cell migration, whereas cadherin-1 takes part in the invadopodia activity.Conclusions:Our results show differential, but complementary, roles for cadherins during PDAC carcinogenesis and illustrate how their expression conditions the PDAC aggressiveness.