Véronique Schmitt
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Véronique Schmitt.
European Physical Journal E | 2003
S. Arditty; Catherine P. Whitby; Bernard P. Binks; Véronique Schmitt; Fernando Leal-Calderon
Abstract.We produce direct and inverse emulsions stabilized by solid mineral particles. If the total amount of particles is initially insufficient to fully cover the oil-water interfaces, the emulsion droplets coalesce such that the total interfacial area between oil and water is progressively reduced. Since it is likely that the particles are irreversibly adsorbed, the degree of surface coverage by them increases until coalescence is halted. We follow the rate of droplet coalescence from the initial fragmented state to the saturated situation. Unlike surfactant-stabilized emulsions, the coalescence frequency depends on time and particle concentration. Both the transient and final droplet size distributions are relatively narrow and we obtain a linear relation between the inverse average droplet diameter and the total amount of solid particles, with a slope that depends on the mixing intensity. The phenomenology is independent of the mixing type and of the droplet volume fraction allowing the fabrication of both direct and inverse emulsion with average droplet sizes ranging from micron to millimetre.
Langmuir | 2013
Mathieu Destribats; Mélanie Wolfs; Florent Pinaud; Véronique Lapeyre; Elisabeth Sellier; Véronique Schmitt; Valérie Ravaine
This work reports a new evidence of the versatility of soft responsive microgels as stabilizers for Pickering emulsions. The organization of microgels at the oil-water interface is a function of the preparation pathway. The present results show that emulsification energy can be used as a trigger to modify microgel deformation at the oil-water interface and their packing density: high shear rates bring strong flattening of the microgels, whereas low shear rates lead to dense monolayers, where the microgels are laterally compressed. As a consequence, the resulting emulsions have opposite behavior in terms of flocculation, which arises from bridging between neighboring drops and is strongly dependent on their surface coverage. This strategy can be applied to any microgel which can sufficiently adsorb at low shear rates, i.e. small microgels or lightly cross-linked ones. The control of the organization of microgels at the interface does not only modify emulsion end-use properties but also constitutes a new tool for the development of Janus-type microgels, obtained by chemical modification of the adsorbed microgels.
Langmuir | 2011
Mathieu Destribats; Véronique Lapeyre; Elisabeth Sellier; Fernando Leal-Calderon; Véronique Schmitt; Valérie Ravaine
Emulsions were prepared using poly(N-isopropylacrylamide) microgels as thermoresponsive stabilizers. The latter are well-known for their sensitivity to temperature: they are swollen by water below the so-called volume phase transition temperature (VPTT = 33 °C) and shrink when heated above it. Most of the studies reported in the literature reveal that the corresponding emulsions are of the oil-in-water type (O/W) and undergo fast destabilization upon warming above the VPTT. In the present study, whereas O/W emulsions were obtained with a wide panel of oils of variable polarity and were all thermoresponsive, water-in-oil (W/O) emulsions were found only in the presence of fatty alcohols and did not exhibit any thermal sensitivity. To understand the peculiar behavior of emulsions based on fatty alcohols, we investigated the organization of microgels at the oil-water interface and we studied the interactions of pNIPAM microgels with octanol. By combining several microscopy methods and by exploiting the limited coalescence process, we provided evidence that W/O emulsions are stabilized by multilayers of nondeformed microgels located inside the aqueous drops. Such behavior is in contradiction with the empirical Finkle rule stating that the continuous phase of the preferred emulsion is the one in which the stabilizer is preferentially dispersed. The study of microgels in nonemulsified binary water/octanol systems revealed that octanol diffused through the aqueous phase and was incorporated in the microgels. Thus, W/O emulsions were stabilized by microgels whose properties were substantially different from the native ones. In particular, after octanol uptake, they were no longer thermoresponsive, which explained the loss of responsiveness of the corresponding W/O emulsions. Finally, we showed that the incorporation of octanol modified the interfacial properties of the microgels: the higher the octanol uptake before emulsification, the lower the amount of particles in direct contact with the interface. The multilayer arrangement was thus necessary to ensure efficient stabilization against coalescence, as it increased interface cohesiveness. We discussed the origin of this counterexample of the Finkles rule.
Langmuir | 2014
Mathieu Destribats; Mayalen Eyharts; Véronique Lapeyre; Elisabeth Sellier; Imre Varga; Valérie Ravaine; Véronique Schmitt
We study the influence of the particle size on the ability of poly(N-isoprolylacrylamide) microgels to stabilize direct oil-in-water Pickering emulsions. The microgel size is varied from 250 to 760 nm, the cross-linking density being kept constant. The emulsion properties strongly depend on the stabilizer size: increasing the particle size induces an evolution from dispersed drops and fluid emulsions toward strongly adhesive drops and flocculated emulsions. In order to get insight into this dependency, we study how particles adsorb at the interface and we determine the extent of their deformation. We propose a correlation between microgel ability to deform and emulsion macroscopic behavior. Indeed, as the microgels size increases, their internal structure becomes more heterogeneous and so does the polymeric interfacial layer they form. The loss of a uniform dense layer favors bridging between neighboring drops, leading to flocculated and therefore less handleable emulsions.
Langmuir | 2010
Mathieu Destribats; Véronique Schmitt; Rénal Backov
We propose a new synthesis pathway without any sacrificial template to prepare original monodisperse thermoresponsive capsules made of a wax core surrounded by a silica shell. Under heating, the inner wax expands and the shell breaks, leading to the liquid oil release. Such capsules that allow triggered deliverance provoked by an external stimulus belong to the class of smart materials. The process is based on the elaboration of size-controlled emulsions stabilized by particles (Pickering emulsions) exploiting the limited coalescence phenomenon. Then the emulsions are cooled down and the obtained suspensions are mineralized by the hydrolysis and condensation of a monomer at the wax-water interface, leading to the formation of capsules. The shell break and the liquid oil release are provoked by heating above the wax melting temperature. We characterize the obtained materials and examine the effect of processing parameters and heating history. By an appropriate choice of the wax, the temperature of release can easily be tuned.
European Physical Journal E | 2012
G. Ceglia; Laurent Maheo; Philippe Viot; Dominique Bernard; Ali Chirazi; I. Ly; Olivier Mondain-Monval; Véronique Schmitt
We produce cellular material based on the formulation of model emulsions whose drop size and composition may be continuously tuned. The obtained solid foams are characterized by narrow cell and pore size distributions in direct relation with the emulsion structure. The mechanical properties are examined, by varying independently the cell size and the foam density, and compared to theoretical predictions. Surprisingly, at constant density, Young’s modulus depends on the cell size. We believe that this observation results from the heterogeneous nature of the solid material constituting the cell walls and propose a mean-field approach that allows describing the experimental data. We discuss the possible origin of the heterogeneity and suggest that the presence of an excess of surfactant close to the interface results in a softer polymer layer near the surface and a harder layer in the bulk.
Langmuir | 2010
Florence Thivilliers-Arvis; Eric Laurichesse; Véronique Schmitt; Fernando Leal-Calderon
We produced triglyceride-in-water emulsions comprising semicrystallized droplets, stabilized by a mixture of protein and low molecular weight surfactant. In these systems, partial (unrelaxed) coalescence could be produced by a thermal treatment referred to as tempering or by the application of a shear. Both primary emulsions and thermally induced gels were submitted to shear strains of variable amplitude, and the resulting transitions were identified. Partial or total destruction of the materials took place and was revealed by the formation of macroscopic clumps. We examined the impact of the initial average droplet size and of the interface composition (controlled by the bulk surfactant-to-protein molar ratio) on the sensitivity to partial coalescence. The evolution under shear occurred via two limiting mechanisms, depending on the susceptibility to partial coalescence. Materials that exhibited fast partial coalescence underwent gelling followed by phase inversion and partial expulsion of the aqueous phase. Alternatively, when the rate of partial coalescence was quite low, large clumps were randomly distributed over the volume and coexisted with a fluid emulsion. The same phenomenology was observed under both oscillatory and steady shear conditions. Interestingly, in oscillatory conditions, clumping was observed above a very well-defined and reproducible value of the strain amplitude independent of the initial state of the system (emulsion or gel).
Langmuir | 2014
Pascal Massé; Elisabeth Sellier; Véronique Schmitt; Valérie Ravaine
The importance of electrostatics on microgel adsorption at a liquid interface is studied, as well as its consequence on emulsion stabilization. In this work, poly(N-isopropylacrylamide) (pNIPAM) microgels bearing different numbers of charges and various distribution profiles are studied, both in solution and at the oil-water interface of emulsion drops. Charged microgels are compared to neutral ones, and electrostatic interactions are screened by adding salt to the aqueous solution. In solution, electrostatics has a significant impact on microgel swelling, as induced by the osmotic pressure exerted by mobile counterions in the gel network. At the interface of drops, microgels pack in a hexagonal array, whose lattice parameter is independent of the number of charges and range of electrostatic interactions. Microgel morphology and packing are ruled only by the adsorption of the pNIPAM chain at the interface. Conversely, decreasing the charge density of microgels by the protonation of the carboxylic groups leads to unstable emulsions, possibly as a result of the impact of hydrogen bonding on microgel deformability.
Progress in colloid and polymer science | 2010
Mathieu Destribats; Serge Ravaine; Valérie Héroguez; Fernando Leal-Calderon; Véronique Schmitt
Pickering emulsions are surfactant-free emulsions, stabilized solely by colloidal particles. Most of these emulsions exhibit exceptionally high stability and bulk elasticity. In order to investigate the effect of interfacial particle interactions and structure on the emulsions properties, we synthesized particles (silica, core-shell latexes, neighborite cubes) whose interactions can be tuned by a composition variable (pH, ionic strength…) leading to stimulus-responsive materials. The systems could switch from kinetically stable to unstable on demand. Surprisingly, some kinetically stable emulsions were obtained at very low interfacial particle coverage. We demonstrate the generality of this phenomenology using different types of particles and we discuss the origin of the stabilization in the poorly-covered regime.
Journal of Dispersion Science and Technology | 2002
Karl Pays; Caroline Mabille; Véronique Schmitt; Fernando Leal-Calderon; Jèro^me Bibette
ABSTRACT This paper aims to review the various degradation pathays of emulsions. Aging of emulsions may proceed through three distinct microscopic mechanisms: diffusion or permeation, dewetting, and coalescence, each one being associated with a very characteristic growth scenario. We show within this context how double emulsions are a unique tool to complete the basic understanding of emulsion metastability.