Veronique Storme
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Veronique Storme.
The Plant Cell | 2007
Tom Ruttink; Matthias Arend; Kris Morreel; Veronique Storme; Stephane Rombauts; Jörg Fromm; Rishikesh P. Bhalerao; Wout Boerjan; Antje Rohde
The growth of perennial plants in the temperate zone alternates with periods of dormancy that are typically initiated during bud development in autumn. In a systems biology approach to unravel the underlying molecular program of apical bud development in poplar (Populus tremula × Populus alba), combined transcript and metabolite profiling were applied to a high-resolution time course from short-day induction to complete dormancy. Metabolite and gene expression dynamics were used to reconstruct the temporal sequence of events during bud development. Importantly, bud development could be dissected into bud formation, acclimation to dehydration and cold, and dormancy. To each of these processes, specific sets of regulatory and marker genes and metabolites are associated and provide a reference frame for future functional studies. Light, ethylene, and abscisic acid signal transduction pathways consecutively control bud development by setting, modifying, or terminating these processes. Ethylene signal transduction is positioned temporally between light and abscisic acid signals and is putatively activated by transiently low hexose pools. The timing and place of cell proliferation arrest (related to dormancy) and of the accumulation of storage compounds (related to acclimation processes) were established within the bud by electron microscopy. Finally, the identification of a large set of genes commonly expressed during the growth-to-dormancy transitions in poplar apical buds, cambium, or Arabidopsis thaliana seeds suggests parallels in the underlying molecular mechanisms in different plant organs.
The Plant Cell | 2007
Jean-Charles Leplé; Rebecca Dauwe; Kris Morreel; Veronique Storme; Catherine Lapierre; Brigitte Pollet; Annette Naumann; Kyu-Young Kang; Hoon Kim; Katia Ruel; Andrée Lefèbvre; Jean-Paul Joseleau; Jacqueline Grima-Pettenati; Riet De Rycke; Sara Andersson-Gunnerås; Alexander Erban; Ines Fehrle; Michel Petit-Conil; Joachim Kopka; Andrea Polle; Eric Messens; Björn Sundberg; Shawn D. Mansfield; John Ralph; Gilles Pilate; Wout Boerjan
Cinnamoyl-CoA reductase (CCR) catalyzes the penultimate step in monolignol biosynthesis. We show that downregulation of CCR in transgenic poplar (Populus tremula × Populus alba) was associated with up to 50% reduced lignin content and an orange-brown, often patchy, coloration of the outer xylem. Thioacidolysis, nuclear magnetic resonance (NMR), immunocytochemistry of lignin epitopes, and oligolignol profiling indicated that lignin was relatively more reduced in syringyl than in guaiacyl units. The cohesion of the walls was affected, particularly at sites that are generally richer in syringyl units in wild-type poplar. Ferulic acid was incorporated into the lignin via ether bonds, as evidenced independently by thioacidolysis and by NMR. A synthetic lignin incorporating ferulic acid had a red-brown coloration, suggesting that the xylem coloration was due to the presence of ferulic acid during lignification. Elevated ferulic acid levels were also observed in the form of esters. Transcript and metabolite profiling were used as comprehensive phenotyping tools to investigate how CCR downregulation impacted metabolism and the biosynthesis of other cell wall polymers. Both methods suggested reduced biosynthesis and increased breakdown or remodeling of noncellulosic cell wall polymers, which was further supported by Fourier transform infrared spectroscopy and wet chemistry analysis. The reduced levels of lignin and hemicellulose were associated with an increased proportion of cellulose. Furthermore, the transcript and metabolite profiling data pointed toward a stress response induced by the altered cell wall structure. Finally, chemical pulping of wood derived from 5-year-old, field-grown transgenic lines revealed improved pulping characteristics, but growth was affected in all transgenic lines tested.
The Plant Cell | 2012
Ruben Vanholme; Veronique Storme; Bartel Vanholme; Lisa Sundin; Jørgen Holst Christensen; Geert Goeminne; Claire Halpin; Antje Rohde; Kris Morreel; Wout Boerjan
The combination of metabolomics and transcriptomics on Arabidopsis thaliana lines mutated in 10 steps of the lignin pathway provides insight into monolignol biosynthesis and the metabolic network in which it is embedded. In addition, this work reveals novel pathways and genes associated with lignin biosynthesis. Lignin engineering is an attractive strategy to improve lignocellulosic biomass quality for processing to biofuels and other bio-based products. However, lignin engineering also results in profound metabolic consequences in the plant. We used a systems biology approach to study the plant’s response to lignin perturbations. To this end, inflorescence stems of 20 Arabidopsis thaliana mutants, each mutated in a single gene of the lignin biosynthetic pathway (phenylalanine ammonia-lyase1 [PAL1], PAL2, cinnamate 4-hydroxylase [C4H], 4-coumarate:CoA ligase1 [4CL1], 4CL2, caffeoyl-CoA O-methyltransferase1 [CCoAOMT1], cinnamoyl-CoA reductase1 [CCR1], ferulate 5-hydroxylase [F5H1], caffeic acid O-methyltransferase [COMT], and cinnamyl alcohol dehydrogenase6 [CAD6], two mutant alleles each), were analyzed by transcriptomics and metabolomics. A total of 566 compounds were detected, of which 187 could be tentatively identified based on mass spectrometry fragmentation and many were new for Arabidopsis. Up to 675 genes were differentially expressed in mutants that did not have any obvious visible phenotypes. Comparing the responses of all mutants indicated that c4h, 4cl1, ccoaomt1, and ccr1, mutants that produced less lignin, upregulated the shikimate, methyl-donor, and phenylpropanoid pathways (i.e., the pathways supplying the monolignols). By contrast, f5h1 and comt, mutants that provoked lignin compositional shifts, downregulated the very same pathways. Reductions in the flux to lignin were associated with the accumulation of various classes of 4-O- and 9-O-hexosylated phenylpropanoids. By combining metabolomic and transcriptomic data in a correlation network, system-wide consequences of the perturbations were revealed and genes with a putative role in phenolic metabolism were identified. Together, our data provide insight into lignin biosynthesis and the metabolic network it is embedded in and provide a systems view of the plant’s response to pathway perturbations.
Biotechnology for Biofuels | 2013
Rebecca Van Acker; Ruben Vanholme; Veronique Storme; Jennifer C. Mortimer; Paul Dupree; Wout Boerjan
BackgroundSecond-generation biofuels are generally produced from the polysaccharides in the lignocellulosic plant biomass, mainly cellulose. However, because cellulose is embedded in a matrix of other polysaccharides and lignin, its hydrolysis into the fermentable glucose is hampered. The senesced inflorescence stems of a set of 20 Arabidopsis thaliana mutants in 10 different genes of the lignin biosynthetic pathway were analyzed for cell wall composition and saccharification yield. Saccharification models were built to elucidate which cell wall parameters played a role in cell wall recalcitrance.ResultsAlthough lignin is a key polymer providing the strength necessary for the plant’s ability to grow upward, a reduction in lignin content down to 64% of the wild-type level in Arabidopsis was tolerated without any obvious growth penalty. In contrast to common perception, we found that a reduction in lignin was not compensated for by an increase in cellulose, but rather by an increase in matrix polysaccharides. In most lignin mutants, the saccharification yield was improved by up to 88% cellulose conversion for the cinnamoyl-coenzyme A reductase1 mutants under pretreatment conditions, whereas the wild-type cellulose conversion only reached 18%. The saccharification models and Pearson correlation matrix revealed that the lignin content was the main factor determining the saccharification yield. However, also lignin composition, matrix polysaccharide content and composition, and, especially, the xylose, galactose, and arabinose contents influenced the saccharification yield. Strikingly, cellulose content did not significantly affect saccharification yield.ConclusionsAlthough the lignin content had the main effect on saccharification, also other cell wall factors could be engineered to potentially increase the cell wall processability, such as the galactose content. Our results contribute to a better understanding of the effect of lignin perturbations on plant cell wall composition and its influence on saccharification yield, and provide new potential targets for genetic improvement.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Rebecca Van Acker; Jean-Charles Leplé; Dirk Aerts; Veronique Storme; Geert Goeminne; Bart Ivens; Frédéric Legée; Catherine Lapierre; Kathleen Piens; Marc Van Montagu; Nicholas Santoro; Clifton E. Foster; John Ralph; Wim Soetaert; Gilles Pilate; Wout Boerjan
Significance In the transition from a fossil-based to a bio-based economy, bioethanol will be generated from the lignocellulosic biomass of second-generation biofuel crops, such as poplar. The lignin polymers in the plant cell walls represent the main factor determining the recalcitrance of biomass to enzymatic processing. We have grown genetically modified poplars, down-regulated for cinnamoyl-CoA reductase (CCR), an enzyme in the lignin biosynthetic pathway, in field trials in Belgium and France. We show that wood samples derived from the transgenic trees are more easily processed into ethanol. However, strong down-regulation also affected biomass yield. In conclusion, CCR down-regulation may become a successful strategy to improve biomass processing if the yield penalty can be overcome. Lignin is one of the main factors determining recalcitrance to enzymatic processing of lignocellulosic biomass. Poplars (Populus tremula x Populus alba) down-regulated for cinnamoyl-CoA reductase (CCR), the enzyme catalyzing the first step in the monolignol-specific branch of the lignin biosynthetic pathway, were grown in field trials in Belgium and France under short-rotation coppice culture. Wood samples were classified according to the intensity of the red xylem coloration typically associated with CCR down-regulation. Saccharification assays under different pretreatment conditions (none, two alkaline, and one acid pretreatment) and simultaneous saccharification and fermentation assays showed that wood from the most affected transgenic trees had up to 161% increased ethanol yield. Fermentations of combined material from the complete set of 20-mo-old CCR–down-regulated trees, including bark and less efficiently down-regulated trees, still yielded ∼20% more ethanol on a weight basis. However, strong down-regulation of CCR also affected biomass yield. We conclude that CCR down-regulation may become a successful strategy to improve biomass processing if the variability in down-regulation and the yield penalty can be overcome.
Developmental Cell | 2012
Ryan Whitford; Ana Fernandez; Ricardo Tejos; Amparo Cuéllar Pérez; Jürgen Kleine-Vehn; Steffen Vanneste; Andrzej Drozdzecki; Johannes Leitner; Lindy Abas; Maarten Aerts; Kurt Hoogewijs; Pawel Radoslaw Baster; Ruth De Groodt; Yao-Cheng Lin; Veronique Storme; Yves Van de Peer; Tom Beeckman; Annemieke Madder; Bart Devreese; Christian Luschnig; Jiri Friml; Pierre Hilson
Growth and development are coordinated by an array of intercellular communications. Known plant signaling molecules include phytohormones and hormone peptides. Although both classes can be implicated in the same developmental processes, little is known about the interplay between phytohormone action and peptide signaling within the cellular microenvironment. We show that genes coding for small secretory peptides, designated GOLVEN (GLV), modulate the distribution of the phytohormone auxin. The deregulation of the GLV function impairs the formation of auxin gradients and alters the reorientation of shoots and roots after a gravity stimulus. Specifically, the GLV signal modulates the trafficking dynamics of the auxin efflux carrier PIN-FORMED2 involved in root tropic responses and meristem organization. Our work links the local action of secretory peptides with phytohormone transport.
Plant Journal | 2010
Ruben Vanholme; John Ralph; Takuya Akiyama; Fachuang Lu; Jorge Rencoret Pazo; Hoon Kim; Jørgen Holst Christensen; Brecht Van Reusel; Veronique Storme; Riet De Rycke; Antje Rohde; Kris Morreel; Wout Boerjan
Lignin engineering is a promising strategy to optimize lignocellulosic plant biomass for use as a renewable feedstock for agro-industrial applications. Current efforts focus on engineering lignin with monomers that are not normally incorporated into wild-type lignins. Here we describe an Arabidopsis line in which the lignin is derived to a major extent from a non-traditional monomer. The combination of mutation in the gene encoding caffeic acid O-methyltransferase (comt) with over-expression of ferulate 5-hydroxylase under the control of the cinnamate 4-hydroxylase promoter (C4H:F5H1) resulted in plants with a unique lignin comprising almost 92% benzodioxane units. In addition to biosynthesis of this particular lignin, the comt C4H:F5H1 plants revealed massive shifts in phenolic metabolism compared to the wild type. The structures of 38 metabolites that accumulated in comt C4H:F51 plants were resolved by mass spectral analyses, and were shown to derive from 5-hydroxy-substituted phenylpropanoids. These metabolites probably originate from passive metabolism via existing biochemical routes normally used for 5-methoxylated and 5-unsubstituted phenylpropanoids and from active detoxification by hexosylation. Transcripts of the phenylpropanoid biosynthesis pathway were highly up-regulated in comt C4H:F5H1 plants, indicating feedback regulation within the pathway. To investigate the role of flavonoids in the abnormal growth of comt C4H:F5H1 plants, a mutation in a gene encoding chalcone synthase (chs) was crossed in. The resulting comt C4H:F5H1 chs plants showed partial restoration of growth. However, a causal connection between flavonoid deficiency and this restoration of growth was not demonstrated; instead, genetic interactions between phenylpropanoid and flavonoid biosynthesis could explain the partial restoration. These genetic interactions must be taken into account in future cell-wall engineering strategies.
New Phytologist | 2011
Antje Rohde; Veronique Storme; Véronique Jorge; Muriel Gaudet; Nicola Vitacolonna; Francesco Fabbrini; Tom Ruttink; Giusi Zaina; Nicolas Marron; Sophie Y. Dillen; Marijke Steenackers; Maurizio Sabatti; Michele Morgante; Wout Boerjan; Catherine Bastien
• The seasonal timing of growth events is crucial to tree distribution and conservation. The seasonal growth cycle is strongly adapted to the local climate that is changing because of global warming. We studied bud set as one cornerstone of the seasonal growth cycle in an integrative approach. • Bud set was dissected at the phenotypic level into several components, and phenotypic components with most genetic variation were identified. While phenotypic variation resided in the timing of growth cessation, and even so more in the duration from growth cessation to bud set, the timing of growth cessation had a stronger genetic component in both natural and hybrid populations. • Quantitative trait loci (QTL) were identified for the most discriminative phenotypic bud-set components across four poplar pedigrees. The QTL from different pedigrees were recurrently detected in six regions of the poplar genome. • These regions of 1.83-4.25 Mbp in size, containing between 202 and 394 genes, form the basis for further molecular-genetic dissection of bud set.
Plant Physiology | 2015
Pieter Clauw; Frederik Coppens; Kristof De Beuf; Stijn Dhondt; Twiggy Van Daele; Katrien Maleux; Veronique Storme; Lieven Clement; Nathalie Gonzalez; Dirk Inzé
Arabidopsis accessions show different phenotypes in response to mild drought, yet a robust transcriptome response is conserved between the accessions. Although the response of plants exposed to severe drought stress has been studied extensively, little is known about how plants adapt their growth under mild drought stress conditions. Here, we analyzed the leaf and rosette growth response of six Arabidopsis (Arabidopsis thaliana) accessions originating from different geographic regions when exposed to mild drought stress. The automated phenotyping platform WIWAM was used to impose stress early during leaf development, when the third leaf emerges from the shoot apical meristem. Analysis of growth-related phenotypes showed differences in leaf development between the accessions. In all six accessions, mild drought stress reduced both leaf pavement cell area and number without affecting the stomatal index. Genome-wide transcriptome analysis (using RNA sequencing) of early developing leaf tissue identified 354 genes differentially expressed under mild drought stress in the six accessions. Our results indicate the existence of a robust response over different genetic backgrounds to mild drought stress in developing leaves. The processes involved in the overall mild drought stress response comprised abscisic acid signaling, proline metabolism, and cell wall adjustments. In addition to these known severe drought-related responses, 87 genes were found to be specific for the response of young developing leaves to mild drought stress.
Theoretical and Applied Genetics | 2004
Veronique Storme; A. Vanden Broeck; Bart Ivens; D. Halfmaerten; J Van Slycken; Stefano Castiglione; F. Grassi; Tiziana Fossati; Joan Cottrell; H.E. Tabbener; François Lefèvre; C. Saintagne; Silvia Fluch; V. Krystufek; K. Burg; S. Bordács; A. Borovics; K. Gebhardt; Barbara Vornam; A. Pohl; N. Alba; D. Agúndez; C. Maestro; E. Notivol; J. Bovenschen; B.C. van Dam; J.R. van der Schoot; Ben Vosman; Wout Boerjan; M.J.M. Smulders
Populus nigra L. is a pioneer tree species of riparian ecosystems that is threatened with extinction because of the loss of its natural habitat. To evaluate the existing genetic diversity of P. nigra within ex-situ collections, we analyzed 675 P. nigra L. accessions from nine European gene banks with three amplified fragment length polymorphism (AFLP) and five microsatellite [or simple sequence repeat (SSR)] primer combinations, and 11 isozyme systems. With isozyme analysis, hybrids could be detected, and only 3% were found in the gene bank collection. AFLP and SSR analyses revealed effectively that 26% of the accessions were duplicated and that the level of clonal duplication varied from 0% in the French gene bank collection up to 78% in the Belgian gene bank collection. SSR analysis was preferred because AFLP was technically more demanding and more prone to scoring errors. To assess the genetic diversity, we grouped material from the gene banks according to topography of the location from which the accessions were originally collected (river system or regions separated by mountains). Genetic diversity was expressed in terms of the following parameters: percentage of polymorphic loci, observed and effective number of alleles, and Nei’s expected heterozygosity or gene diversity (for AFLP). Genetic diversity varied from region to region and depended, to some extent, on the marker system used. The most unique alleles were identified in the Danube region (Austria), the Rhône region (France), Italy, the Rijn region (The Netherlands), and the Ebro region (Spain). In general, the diversity was largest in the material collected from the regions in Southern Europe. Dendrograms and principal component analysis resulted in a clustering according to topography. Material from the same river systems, but from different countries, clustered together. The genetic differentiation among the regions (Fst/Gst) was moderate.