Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Véronique Thybaud is active.

Publication


Featured researches published by Véronique Thybaud.


Environmental and Molecular Mutagenesis | 2000

In vivo transgenic mutation assays.

John A. Heddle; Stephen Dean; Takehiko Nohmi; Michaël E.T.I. Boerrigter; Daniel A. Casciano; George R. Douglas; Barry W. Glickman; Nancy J. Gorelick; Jon C. Mirsalis; Hans-Jörg Martus; Thomas R. Skopek; Véronique Thybaud; Kenneth R. Tindall; Nobuhiro Yajima

Transgenic rodent gene mutation models provide quick and statistically reliable assays for mutations in the DNA from any tissue. For regulatory applications, assays should be based on neutral genes, be generally available in several laboratories, and be readily transferable. Five or fewer repeated treatments are inadequate to conclude that a compound is negative but more than 90 daily treatments may risk complications. A sampling time of 35 days is suitable for most tissues and chemicals, while shorter sampling times might be appropriate for highly proliferative tissues. For phage‐based assays, 5 to 10 animals per group should be analyzed, assuming a spontaneous mutant frequency (MF) of ∼3 × 10−5 mutants/locus and 125,000–300,000 plaque or colony forming units (PFU or CFU) per tissue. Data should be generated for two dose groups but three should be treated, at the maximum tolerated dose (MTD), two‐thirds the MTD, and one‐third the MTD. Concurrent positive control animals are only necessary during validation, but positive control DNA must be included in each plating. Tissues should be processed and analyzed in a block design and the total number of PFUs or CFUs and the MF for each tissue and animal reported. Sequencing data would not normally be required but might provide useful additional information in specific circumstances. Statistical tests used should consider the animal as the experimental unit. Nonparametric statistical tests are recommended. A positive result is a statistically significant dose‐response and/or statistically significant increase in any dose group compared to concurrent negative controls using an appropriate statistical model. A negative result is statistically nonsignificant with all mean MF within two standard deviations of the control. Environ. Mol. Mutagen. 35:253–259, 2000


Environmental and Molecular Mutagenesis | 2013

Quantitative approaches for assessing dose–response relationships in genetic toxicology studies

B. Bhaskar Gollapudi; George E. Johnson; Lya G. Hernández; Lynn H. Pottenger; Kerry L. Dearfield; Alan M. Jeffrey; E. Julien; James H. Kim; David P. Lovell; James T. MacGregor; Martha M. Moore; J. van Benthem; Paul A. White; Errol Zeiger; Véronique Thybaud

Genetic toxicology studies are required for the safety assessment of chemicals. Data from these studies have historically been interpreted in a qualitative, dichotomous “yes” or “no” manner without analysis of dose–response relationships. This article is based upon the work of an international multi‐sector group that examined how quantitative dose–response relationships for in vitro and in vivo genetic toxicology data might be used to improve human risk assessment. The group examined three quantitative approaches for analyzing dose–response curves and deriving point‐of‐departure (POD) metrics (i.e., the no‐observed‐genotoxic‐effect‐level (NOGEL), the threshold effect level (Td), and the benchmark dose (BMD)), using data for the induction of micronuclei and gene mutations by methyl methanesulfonate or ethyl methanesulfonate in vitro and in vivo. These results suggest that the POD descriptors obtained using the different approaches are within the same order of magnitude, with more variability observed for the in vivo assays. The different approaches were found to be complementary as each has advantages and limitations. The results further indicate that the lower confidence limit of a benchmark response rate of 10% (BMDL10) could be considered a satisfactory POD when analyzing genotoxicity data using the BMD approach. The models described permit the identification of POD values that could be combined with mode of action analysis to determine whether exposure(s) below a particular level constitutes a significant human risk. Subsequent analyses will expand the number of substances and endpoints investigated, and continue to evaluate the utility of quantitative approaches for analysis of genetic toxicity dose–response data. Environ. Mol. Mutagen., 2013.


Bioorganic & Medicinal Chemistry | 2001

The discovery of RPR 200765A, a p38 MAP kinase inhibitor displaying a good oral anti-arthritic efficacy

Iain Mcfarlane Mclay; Frank Halley; John E. Souness; Jeffrey Mark Rhône-Poulenc Rorer Ltd. McKENNA; V. Benning; Mark A. Birrell; Brenda Burton; Maria G Belvisi; Alan John Collis; Alex Constan; Martyn Foster; David J Hele; Zaid Jayyosi; Michael F. Kelley; Chris Maslen; Glen K. Miller; Marie-Claude Ouldelhkim; Kenneth Page; Simon Phipps; Kenneth Pollock; Barry Porter; Andrew J. Ratcliffe; Elisabeth J. Redford; Stephen Webber; Bryan Slater; Véronique Thybaud; Nicola Wilsher

RPR132331, a 2-(2-dioxanyl)imidazole, was identified as an inhibitor of tumour necrosis factor (TNF)alpha release from lipopolysaccharide (LPS)-stimulated human monocytes. An intensive programme of work exploring the biology, toxicity and physical chemistry of a novel series of inhibitors, derived from RPR132331, has led to the identification of RPR200765A, a development candidate for the treatment of rheumatoid arthritis (RA). RPR200765A is a potent and selective inhibitor of p38 MAP kinase (IC50 = 50 nM). It inhibits LPS-stimulated TNFalpha release both in vitro, from human monocytes (EC50 = 110 nM), and in vivo in Balb/c mice (ED50 = 6 mg/kg). At oral doses between 10 and 30 mg/kg/day it reduces the incidence and progression in the rat streptococcal cell wall (SCW) arthritis model when administered in either prophylactic or therapeutic dosing regimens. The compound, which is a mesylate salt and exists as a stable monohydrate, shows good oral bioavailabiltiy (F = 50% in the rat) and excellent chemical stability. The data from the SCW disease model suggests that RPR200765A could exhibit a profile of disease modifying activity in rheumatoid arthritis (RA) patients which is not observed with current drug therapies.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2010

Collaborative study on fifteen compounds in the rat-liver Comet assay integrated into 2- and 4-week repeat-dose studies.

Andreas Rothfuss; Mike O’Donovan; Marlies De Boeck; Dominique Brault; Andreas Czich; Laura Custer; Shuichi Hamada; Ulla Plappert-Helbig; Makoto Hayashi; Jonathan Howe; Andrew R. Kraynak; Bas-jan van der Leede; Madoka Nakajima; Catherine C. Priestley; Véronique Thybaud; Kazuhiko Saigo; Satin Sawant; Jing Shi; Richard D. Storer; Melanie Struwe; Esther Vock; Sheila M. Galloway

A collaborative trial was conducted to evaluate the possibility of integrating the rat-liver Comet assay into repeat-dose toxicity studies. Fourteen laboratories from Europe, Japan and the USA tested fifteen chemicals. Two chemicals had been previously shown to induce micronuclei in an acute protocol, but were found negative in a 4-week Micronucleus (MN) Assay (benzo[a]pyrene and 1,2-dimethylhydrazine; Hamada et al., 2001); four genotoxic rat-liver carcinogens that were negative in the MN assay in bone marrow or blood (2,6-dinitrotoluene, dimethylnitrosamine, 1,2-dibromomethane, and 2-amino-3-methylimidazo[4,5-f]quinoline); three compounds used in the ongoing JaCVAM (Japanese Center for the Validation of Alternative Methods) validation study of the acute liver Comet assay (2,4-diaminotoluene, 2,6-diaminotoluene and acrylamide); three pharmaceutical-like compounds (chlordiazepoxide, pyrimethamine and gemifloxacin), and three non-genotoxic rodent liver carcinogens (methapyrilene, clofibrate and phenobarbital). Male rats received oral administrations of the test compounds, daily for two or four weeks. The top dose was meant to be the highest dose producing clinical signs or histopathological effects without causing mortality, i.e. the 28-day maximum tolerated dose. The liver Comet assay was performed according to published recommendations and following the protocol for the ongoing JaCVAM validation trial. Laboratories provided liver Comet assay data obtained at the end of the long-term (2- or 4-week) studies together with an evaluation of liver histology. Most of the test compounds were also investigated in the liver Comet assay after short-term (1-3 daily) administration to compare the sensitivity of the two study designs. MN analyses were conducted in bone marrow or peripheral blood for most of the compounds to determine whether the liver Comet assay could complement the MN assay for the detection of genotoxins after long-term treatment. Most of the liver genotoxins were positive and the three non-genotoxic carcinogens gave negative result in the liver Comet assay after long-term administration. There was a high concordance between short- and long-term Comet assay results. Most compounds when tested up to the maximum tolerated dose were correctly detected in both short- and long-term studies. Discrepant results were obtained with 2,6 diaminotoluene (negative in the short-term, but positive in the long-term study), phenobarbital (positive in the short-term, but negative in the long-term study) and gemifloxacin (positive in the short-term, but negative in the long-term study). The overall results indicate that the liver Comet assay can be integrated within repeat-dose toxicity studies and efficiently complements the MN assay in detecting genotoxins. Practical aspects of integrating genotoxicity endpoints into repeat-dose studies were evaluated, e.g. by investigating the effect of blood sampling, as typically performed during toxicity studies, on the Comet and MN assays. The bleeding protocols used here did not affect the conclusions of the Comet assay or of the MN assays in blood and bone marrow. Although bleeding generally increased reticulocyte frequencies, the sensitivity of the response in the MN assay was not altered. These findings indicate that all animals in a toxicity study (main-study animals as well as toxicokinetic (TK) satellite animals) could be used for evaluating genotoxicity. However, possible logistical issues with scheduling of the necropsies and the need to conduct electrophoresis promptly after tissue sampling suggest that the use of TK animals could be simpler. The data so far do not indicate that liver proliferation or toxicity confound the results of the liver Comet assay. As was also true for other genotoxicity assays, criteria for evaluation of Comet assay results and statistical analyses differed among laboratories. Whereas comprehensive advice on statistical analysis is available in the literature, agreement is needed on applying consistent criteria.


Environmental and Molecular Mutagenesis | 2014

Derivation of point of departure (PoD) estimates in genetic toxicology studies and their potential applications in risk assessment

George E. Johnson; Lya G. Soeteman-Hernández; B. Bhaskar Gollapudi; Owen Bodger; Kerry L. Dearfield; Robert H. Heflich; J.G. Hixon; David P. Lovell; James T. MacGregor; Lynn H. Pottenger; C.M. Thompson; L. Abraham; Véronique Thybaud; Jennifer Y. Tanir; Errol Zeiger; J. van Benthem; Paul A. White

Genetic toxicology data have traditionally been employed for qualitative, rather than quantitative evaluations of hazard. As a continuation of our earlier report that analyzed ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS) dose–response data (Gollapudi et al., 2013), here we present analyses of 1‐ethyl‐1‐nitrosourea (ENU) and 1‐methyl‐1‐nitrosourea (MNU) dose–response data and additional approaches for the determination of genetic toxicity point‐of‐departure (PoD) metrics. We previously described methods to determine the no‐observed‐genotoxic‐effect‐level (NOGEL), the breakpoint‐dose (BPD; previously named Td), and the benchmark dose (BMD10) for genetic toxicity endpoints. In this study we employed those methods, along with a new approach, to determine the non‐linear slope‐transition‐dose (STD), and alternative methods to determine the BPD and BMD, for the analyses of nine ENU and 22 MNU datasets across a range of in vitro and in vivo endpoints. The NOGEL, BMDL10 and BMDL1SD PoD metrics could be readily calculated for most gene mutation and chromosomal damage studies; however, BPDs and STDs could not always be derived due to data limitations and constraints of the underlying statistical methods. The BMDL10 values were often lower than the other PoDs, and the distribution of BMDL10 values produced the lowest median PoD. Our observations indicate that, among the methods investigated in this study, the BMD approach is the preferred PoD for quantitatively describing genetic toxicology data. Once genetic toxicology PoDs are calculated via this approach, they can be used to derive reference doses and margin of exposure values that may be useful for evaluating human risk and regulatory decision making. Environ. Mol. Mutagen. 55:609–623, 2014.


Regulatory Toxicology and Pharmacology | 2013

Use of in silico systems and expert knowledge for structure-based assessment of potentially mutagenic impurities

Andreas Sutter; Alexander Amberg; Scott Boyer; Alessandro Brigo; Joseph F. Contrera; Laura Custer; Krista L. Dobo; Véronique Gervais; Susanne Glowienke; Jacky Van Gompel; Nigel Greene; Wolfgang Muster; John Nicolette; M. Vijayaraj Reddy; Véronique Thybaud; Esther Vock; Angela White; Lutz Müller

Genotoxicity hazard identification is part of the impurity qualification process for drug substances and products, the first step of which being the prediction of their potential DNA reactivity using in silico (quantitative) structure-activity relationship (Q)SAR models/systems. This white paper provides information relevant to the development of the draft harmonized tripartite guideline ICH M7 on potentially DNA-reactive/mutagenic impurities in pharmaceuticals and their application in practice. It explains relevant (Q)SAR methodologies as well as the added value of expert knowledge. Moreover, the predictive value of the different methodologies analyzed in two surveys conveyed in the US and European pharmaceutical industry is compared: most pharmaceutical companies used a rule-based expert system as their primary methodology, yielding negative predictivity values of ⩾78% in all participating companies. A further increase (>90%) was often achieved by an additional expert review and/or a second QSAR methodology. Also in the latter case, an expert review was mandatory, especially when conflicting results were obtained. Based on the available data, we concluded that a rule-based expert system complemented by either expert knowledge or a second (Q)SAR model is appropriate. A maximal transparency of the assessment process (e.g. methods, results, arguments of weight-of-evidence approach) achieved by e.g. data sharing initiatives and the use of standards for reporting will enable regulators to fully understand the results of the analysis. Overall, the procedures presented here for structure-based assessment are considered appropriate for regulatory submissions in the scope of ICH M7.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2006

SFTG international collaborative study on in vitro micronucleus test: III. Using CHO cells

Marilyn J. Aardema; Ronald D. Snyder; Carol Spicer; Katyayini Divi; Takeshi Morita; Robert J. Mauthe; David P. Gibson; Sandra Soelter; Patrick T. Curry; Véronique Thybaud; Giocondo Lorenzon; Daniel Marzin; Elisabeth Lorge

In this report, results are presented from an international study of the in vitro micronucleus assay using mouse lymphoma L5178Y cells. This study was coordinated by an organizing committee supported by the SFTG (the French branch of the European Environmental Mutagen Society). Test chemicals included mannitol, bleomycin, 5-fluorouracil, colchicine and griseofulvin. Mitomycin C was used as a positive control. Each chemical was evaluated in at least two laboratories following a variety of different protocols (short and long exposures, varying recovery times, with and without cytochalasin B) in order to help determine a standard protocol for routine testing in mouse lymphoma L5178Y cells. Mannitol was the only exception, being tested in only one laboratory. Mannitol was negative, while bleomycin induced a concentration-dependent increase in micronucleated cells. Equivocal results were obtained for 5-fluorouracil, colchicine and griseofulvin. High levels of cytotoxicity interfered with the assessment of aneuploidy for colchicine and griseofulvin, preventing the ability to obtain clear results in all the treatment schedules. Experiments with 5-fluorouracil, colchicine and griseofulvin showed that both short and long treatment times are required as each compound was detected using one or more treatment protocol. No clear differences were seen in the sensitivity or accuracy of the responses in the presence of absence of cytochalasin B. It was also found that a recovery period may help to detect compounds which induce a genotoxicity associated to a reduction in cell number or cell proliferation. Overall, the results of the present study show that mouse lymphoma L5178Y cells are suitable for the in vitro micronucleus assay.


Environmental and Molecular Mutagenesis | 2011

New and Emerging Technologies for Genetic Toxicity Testing

Anthony M. Lynch; Jennifer C. Sasaki; Rosalie K. Elespuru; David Jacobson-Kram; Véronique Thybaud; Marlies De Boeck; Marilyn J. Aardema; R. Daniel Benz; Stephen D. Dertinger; George R. Douglas; Paul A. White; Patricia A. Escobar; Albert J. Fornace; Masamitsu Honma; Russell T. Naven; James F. Rusling; Robert H. Schiestl; Richard M. Walmsley; Eiji Yamamura; Jan van Benthem; James H. Kim

The International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Project Committee on the Relevance and Follow‐up of Positive Results in In Vitro Genetic Toxicity (IVGT) Testing established an Emerging Technologies and New Strategies Workgroup to review the current State of the Art in genetic toxicology testing. The aim of the workgroup was to identify promising technologies that will improve genotoxicity testing and assessment of in vivo hazard and risk, and that have the potential to help meet the objectives of the IVGT. As part of this initiative, HESI convened a workshop in Washington, DC in May 2008 to discuss mature, maturing, and emerging technologies in genetic toxicology. This article collates the abstracts of the New and Emerging Technologies Workshop together with some additional technologies subsequently considered by the workgroup. Each abstract (available in the online version of the article) includes a section addressed specifically to the strengths, weaknesses, opportunities, and threats associated with the respective technology. Importantly, an overview of the technologies and an indication of how their use might be aligned with the objectives of IVGT are presented. In particular, consideration was given with regard to follow‐up testing of positive results in the standard IVGT tests (i.e., Salmonella Ames test, chromosome aberration assay, and mouse lymphoma assay) to add weight of evidence and/or provide mechanism of action for improved genetic toxicity risk assessments in humans. Environ. Mol. Mutagen., 2011.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2015

IWGT report on quantitative approaches to genotoxicity risk assessment II. Use of point-of-departure (PoD) metrics in defining acceptable exposure limits and assessing human risk ☆

James T. MacGregor; Roland Frötschl; Paul A. White; Kenny S. Crump; David A. Eastmond; Shoji Fukushima; Melanie Guérard; Makoto Hayashi; Lya G. Soeteman-Hernández; George E. Johnson; Toshio Kasamatsu; Dan D. Levy; Takeshi Morita; Lutz Müller; Rita Schoeny; Maik Schuler; Véronique Thybaud

This is the second of two reports from the International Workshops on Genotoxicity Testing (IWGT) Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (the QWG). The first report summarized the discussions and recommendations of the QWG related to the need for quantitative dose-response analysis of genetic toxicology data, the existence and appropriate evaluation of threshold responses, and methods to analyze exposure-response relationships and derive points of departure (PoDs) from which acceptable exposure levels could be determined. This report summarizes the QWG discussions and recommendations regarding appropriate approaches to evaluate exposure-related risks of genotoxic damage, including extrapolation below identified PoDs and across test systems and species. Recommendations include the selection of appropriate genetic endpoints and target tissues, uncertainty factors and extrapolation methods to be considered, the importance and use of information on mode of action, toxicokinetics, metabolism, and exposure biomarkers when using quantitative exposure-response data to determine acceptable exposure levels in human populations or to assess the risk associated with known or anticipated exposures. The empirical relationship between genetic damage (mutation and chromosomal aberration) and cancer in animal models was also examined. It was concluded that there is a general correlation between cancer induction and mutagenic and/or clastogenic damage for agents thought to act via a genotoxic mechanism, but that the correlation is limited due to an inadequate number of cases in which mutation and cancer can be compared at a sufficient number of doses in the same target tissues of the same species and strain exposed under directly comparable routes and experimental protocols.


Environmental and Molecular Mutagenesis | 2011

Follow-Up Actions from Positive Results of In Vitro Genetic Toxicity Testing

Kerry L. Dearfield; Véronique Thybaud; Michael C. Cimino; Laura Custer; Andreas Czich; James Harvey; Susan D. Hester; James H. Kim; David Kirkland; Dan D. Levy; Elisabeth Lorge; Martha M. Moore; Gladys Ouédraogo-Arras; Maik Schuler; Willi Suter; Kevin Sweder; Kirk Tarlo; Jan van Benthem; Freddy Van Goethem; Kristine L. Witt

Appropriate follow‐up actions and decisions are needed when evaluating and interpreting clear positive results obtained in the in vitro assays used in the initial genotoxicity screening battery (i.e., the battery of tests generally required by regulatory authorities) to assist in overall risk‐based decision making concerning the potential effects of human exposure to the agent under test. Over the past few years, the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Project Committee on the Relevance and Follow‐up of Positive Results in In Vitro Genetic Toxicity (IVGT) Testing developed a decision process flow chart to be applied in case of clear positive results in vitro. It provides for a variety of different possibilities and allows flexibility in choosing follow‐up action(s), depending on the results obtained in the initial battery of assays and available information. The intent of the Review Subgroup was not to provide a prescriptive testing strategy, but rather to reinforce the concept of weighing the totality of the evidence. The Review Subgroup of the IVGT committee highlighted the importance of properly analyzing the existing data, and considering potential confounding factors (e.g., possible interactions with the test systems, presence of impurities, irrelevant metabolism), and chemical modes of action when analyzing and interpreting positive results in the in vitro genotoxicity assays and determining appropriate follow‐up testing. The Review Subgroup also examined the characteristics, strengths, and limitations of each of the existing in vitro and in vivo genotoxicity assays to determine their usefulness in any follow‐up testing. Environ. Mol. Mutagen., 2011.

Collaboration


Dive into the Véronique Thybaud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan van Benthem

Centre for Health Protection

View shared research outputs
Top Co-Authors

Avatar

Martha M. Moore

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge