Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vesa Hongisto is active.

Publication


Featured researches published by Vesa Hongisto.


PLOS ONE | 2013

High-throughput 3D screening reveals differences in drug sensitivities between culture models of JIMT1 breast cancer cells.

Vesa Hongisto; Sandra Jernström; Vidal Fey; John-Patrick Mpindi; Kristine Kleivi Sahlberg; Olli Kallioniemi; Merja Perälä

The traditional method for studying cancer in vitro is to grow immortalized cancer cells in two-dimensional monolayers on plastic. However, many cellular features are impaired in these artificial conditions, and large changes in gene expression compared to tumors have been reported. Three-dimensional cell culture models have become increasingly popular and are suggested to be better models than two-dimensional monolayers due to improved cell-to-cell contact and structures that resemble in vivo architecture. The aim of this study was to develop a simple high-throughput three-dimensional drug screening method and to compare drug responses in JIMT1 breast cancer cells when grown in two dimensions, in poly(2-hydroxyethyl methacrylate) induced anchorage-independent three-dimensional models, and in Matrigel three-dimensional cell culture models. We screened 102 compounds with multiple concentrations and biological replicates for their effects on cell proliferation. The cells were either treated immediately upon plating, or they were allowed to grow in three-dimensional cultures for 4 days before the drug treatment. Large variations in drug responses were observed between the models indicating that comparisons of culture model-influenced drug sensitivities cannot be made based on the effects of a single drug. However, we show with the 63 most prominent drugs that, in general, JIMT1 cells grown on Matrigel were significantly more sensitive to drugs than cells grown in two-dimensional cultures, while the responses of cells grown in poly(2-hydroxyethyl methacrylate) resembled those of the two-dimensional cultures. Furthermore, comparing the gene expression profiles of the cell culture models to xenograft tumors indicated that cells cultured in Matrigel and as xenografts most closely resembled each other. In this study, we also suggest that three-dimensional cultures can provide a platform for systematic experimentation of larger compound collections in a high-throughput mode and be used as alternatives to traditional two-dimensional screens for better comparability to the in vivo state.


Molecular Oncology | 2013

The HER2 amplicon includes several genes required for the growth and survival of HER2 positive breast cancer cells

Kristine Kleivi Sahlberg; Vesa Hongisto; Henrik Edgren; Rami Mäkelä; Kirsi Hellström; Eldri U. Due; Hans Kristian Moen Vollan; Niko Sahlberg; Maija Wolf; Anne Lise Børresen-Dale; Merja Perälä; Olli Kallioniemi

About 20% of breast cancers are characterized by amplification and overexpression of the HER2 oncogene. Although significant progress has been achieved for treating such patients with HER2 inhibitor trastuzumab, more than half of the patients respond poorly or become resistant to the treatment. Since the HER2 amplicon at 17q12 contains multiple genes, we have systematically explored the role of the HER2 co‐amplified genes in breast cancer cell growth and their relation to trastuzumab resistance. We integrated aCGH data of the HER2 amplicon from 71 HER2 positive breast tumors and 10 cell lines with systematic functional RNA interference analysis of 23 core amplicon genes with several phenotypic endpoints in a panel of trastuzumab responding and non‐responding HER2 positive breast cancer cells. Silencing of HER2 caused a greater growth arrest and apoptosis in the responding compared to the non‐responding cell lines, indicating that the resistant cells are inherently less dependent on the HER2 pathway. Several other genes in the amplicon also showed a more pronounced effect when silenced; indicating that expression of HER2 co‐amplified genes may be needed to sustain the growth of breast cancer cells. Importantly, co‐silencing of STARD3, GRB7, PSMD3 and PERLD1 together with HER2 led to an additive inhibition of cell viability as well as induced apoptosis. These studies indicate that breast cancer cells may become addicted to the amplification of several genes that reside in the HER2 amplicon. The simultaneous targeting of these genes may increase the efficacy of the anti‐HER2 therapies and possibly also counteract trastuzumab resistance. The observed additive effects seem to culminate to both apoptosis and cell proliferation pathways indicating that these pathways may be interesting targets for combinatorial treatment of HER2+ breast cancers.


Oncotarget | 2016

Decreased expression of B7-H3 reduces the glycolytic capacity and sensitizes breast cancer cells to AKT/mTOR inhibitors

Caroline E. Nunes-Xavier; Karine Flem Karlsen; Christina Tekle; Cathrine Pedersen; Tove Øyjord; Vesa Hongisto; Jahn M. Nesland; Ming Tan; Kristine Kleivi Sahlberg; Øystein Fodstad

B7 family proteins are important immune response regulators, and can mediate oncogenic signaling and cancer development. We have used human triple-negative breast cancer cell lines with different expression levels of B7-H3 to evaluate its effects on the sensitivity to 22 different anticancer compounds in a drug screen. API-2 (triciribidine) and everolimus (RAD-001), two inhibitors that target the PI3K/AKT/mTOR pathway, showed enhanced inhibition of cell viability and proliferation in B7-H3 knockdown tumor cells compared to their B7-H3 expressing counterparts. Similar inhibition was seen in control cells treated with an anti-B7-H3 monoclonal antibody. In B7-H3 overexpressing cells, the effects of the two drugs were reduced, supported also by in vivo experiments in which B7-H3 overexpressing xenografts were less sensitive to everolimus than control tumors. In API-2 and everolimus-treated B7-H3 overexpressing cells, phospho-mTOR levels were decreased. However, phosphorylation of p70S6K was differentially regulated in B7-H3 cells treated with API-2 or everolimus, suggesting a different B7-H3-mediated mechanism downstream of mTOR. Both API-2 and everolimus decreased the glycolysis of the cells, whereas knockdown of B7-H3 decreased and B7-H3 overexpression increased the glycolytic capacity. In conclusion, we have unveiled a previously unknown relationship between B7-H3 expression and glycolytic capacity in tumor cells, and found that B7-H3 confers resistance to API-2 and everolimus. The results provide novel insights into the function of B7-H3 in cancer, and suggest that targeting of B7-H3 may be a novel alternative to improve current anticancer therapies.


New Biotechnology | 2016

Large-scale bioprospecting of cyanobacteria, micro- and macroalgae from the Aegean Sea

Sofia Montalvão; Zeliha Demirel; Prabha Devi; Valter Lombardi; Vesa Hongisto; Merja Perälä; Johannes Hattara; Esra Imamoglu; Supriya Tilvi; Gamze Turan; Meltem Conk Dalay; Päivi Tammela

Marine organisms constitute approximately one-half of the total global biodiversity, being rich reservoirs of structurally diverse biofunctional components. The potential of cyanobacteria, micro- and macroalgae as sources of antimicrobial, antitumoral, anti-inflammatory, and anticoagulant compounds has been reported extensively. Nonetheless, biological activities of marine fauna and flora of the Aegean Sea have remained poorly studied when in comparison to other areas of the Mediterranean Sea. In this study, we screened the antimicrobial, antifouling, anti-inflammatory and anticancer potential of in total 98 specimens collected from the Aegean Sea. Ethanol extract of diatom Amphora cf capitellata showed the most promising antimicrobial results against Candida albicans while the extract of diatom Nitzschia communis showed effective results against Gram-positive bacterium, S. aureus. Extracts from the red alga Laurencia papillosa and from three Cystoseira species exhibited selective antiproliferative activity against cancer cell lines and an extract from the brown alga Dilophus fasciola showed the highest anti-inflammatory activity as measured in primary microglial and astrocyte cell cultures as well as by the reduction of proinflammatory cytokines. In summary, our study demonstrates that the Aegean Sea is a rich source of species that possess interesting potential for developing industrial applications.


Toxicological Sciences | 2018

A Data Fusion Pipeline for Generating and Enriching Adverse Outcome Pathway Descriptions

Penny Nymark; Linda Rieswijk; Friederike Ehrhart; Nina Jeliazkova; Georgia Tsiliki; Haralambos Sarimveis; Chris T. Evelo; Vesa Hongisto; Pekka Kohonen; Egon Willighagen; Roland C. Grafström

Increasing amounts of systems toxicology data, including omics results, are becoming publically available and accessible in databases. Data-driven and informatics-tool supported pipeline schemas for fitting such data into Adverse Outcome Pathway (AOP) descriptions could potentially aid the development of nonanimal-based hazard and risk assessment methods. We devised a 6-step workflow that integrated diverse types of toxicology data into a novel AOP scheme for pulmonary fibrosis. Mining of literature references and diverse data sources covering previous pathway descriptions and molecular results were coupled in a stepwise manner with informatics tools applications that enabled gene linkage and pathway identification in molecular interaction maps. Ultimately, a network of functional elements coupled 64 pulmonary fibrosis-associated genes into a novel, open-source AOP-linked molecular pathway, now available for commenting and improvements in WikiPathways (WP3624). Applying in silico-based knowledge extraction and modeling, the pipeline enabled screening and fusion of many different complex data types, including the integration of omics results. Overall, the taken, stepwise approach should be generally useful to construct novel AOP descriptions as well as to enrich developing AOP descriptions in progress.


Breast Cancer: Targets and Therapy | 2017

Drug-screening and genomic analyses of HER2-positive breast cancer cell lines reveal predictors for treatment response

Sandra Jernström; Vesa Hongisto; Suvi Katri Leivonen; Eldri U. Due; Dagim Shiferaw Tadele; Henrik Edgren; Olli Kallioniemi; Merja Perälä; Gunhild M. Mælandsmo; Kristine Kleivi Sahlberg

Background Approximately 15%–20% of all diagnosed breast cancers are characterized by amplified and overexpressed HER2 (= ErbB2). These breast cancers are aggressive and have a poor prognosis. Although improvements in treatment have been achieved after the introduction of trastuzumab and lapatinib, many patients do not benefit from these drugs. Therefore, in-depth understanding of the mechanisms behind the treatment responses is essential to find alternative therapeutic strategies. Materials and methods Thirteen HER2 positive breast cancer cell lines were screened with 22 commercially available compounds, mainly targeting proteins in the ErbB2-signaling pathway, and molecular mechanisms related to treatment sensitivity were sought. Cell viability was measured, and treatment responses between the cell lines were compared. To search for response predictors and genomic and transcriptomic profiling, PIK3CA mutations and PTEN status were explored and molecular features associated with drug sensitivity sought. Results The cell lines were divided into three groups according to the growth-retarding effect induced by trastuzumab and lapatinib. Interestingly, two cell lines insensitive to trastuzumab (KPL4 and SUM190PT) showed sensitivity to an Akt1/2 kinase inhibitor. These cell lines had mutation in PIK3CA and loss of PTEN, suggesting an activated and druggable Akt-signaling pathway. Expression levels of five genes (CDC42, MAPK8, PLCG1, PTK6, and PAK6) were suggested as predictors for the Akt1/2 kinase-inhibitor response. Conclusion Targeting the Akt-signaling pathway shows promise in cell lines that do not respond to trastuzumab. In addition, our results indicate that several molecular features determine the growth-retarding effects induced by the drugs, suggesting that parameters other than HER2 amplification/expression should be included as markers for therapy decisions.


Genomics data | 2014

The HER2 amplicon includes several genes required for the growth and survival of HER2 positive breast cancer cells - A data description.

Vesa Hongisto; Miriam Ragle Aure; Rami Mäkelä; Kristine Kleivi Sahlberg

A large number of breast cancers are characterized by amplification and overexpression of the chromosome segment surrounding the HER2 (ERBB2) oncogene. As the HER2 amplicon at 17q12 contains multiple genes, we have systematically explored the role of the HER2 co-amplified genes in breast cancer cell growth and their relation to trastuzumab resistance. We integrated array comparative genomic hybridization (aCGH) data of the HER2 amplicon from 71 HER2 positive breast tumors and 10 cell lines with systematic functional RNA interference analysis of 23 core amplicon genes with several phenotypic endpoints in a panel of trastuzumab responding and non-responding HER2 positive breast cancer cells. In this Data in Brief we give a detailed description of the experimental procedures and the data analysis methods used in the study (1).


Marine Drugs | 2018

Marine Microalgae: Promising Source for New Bioactive Compounds

Caterina de Vera; Guillermo Díaz Crespín; Antonio Hernández Daranas; Sofia Montalvão Looga; Katja-Emilia Lillsunde; Päivi Tammela; Merja Perälä; Vesa Hongisto; Johannes Virtanen; Heiko Rischer; Christian D. Muller; Manuel Norte; Jose R. Fernandez; María L. Souto

The study of marine natural products for their bioactive potential has gained strength in recent years. Oceans harbor a vast variety of organisms that offer a biological and chemical diversity with metabolic abilities unrivalled in terrestrial systems, which makes them an attractive target for bioprospecting as an almost untapped resource of biotechnological applications. Among them, there is no doubt that microalgae could become genuine “cell factories” for the biological synthesis of bioactive substances. Thus, in the course of inter-laboratory collaboration sponsored by the European Union (7th FP) into the MAREX Project focused on the discovery of novel bioactive compounds of marine origin for the European industry, a bioprospecting study on 33 microalgae strains was carried out. The strains were cultured at laboratory scale. Two extracts were prepared for each one (biomass and cell free culture medium) and, thus, screened to provide information on the antimicrobial, the anti-proliferative, and the apoptotic potential of the studied extracts. The outcome of this study provides additional scientific data for the selection of Alexandrium tamarensis WE, Gambierdiscus australes, Prorocentrum arenarium, Prorocentrum hoffmannianum, and Prorocentrum reticulatum (Pr-3) for further investigation and offers support for the continued research of new potential drugs for human therapeutics from cultured microalgae.


Annals of the American Thoracic Society | 2018

Toxic and Genomic Influences of Inhaled Nanomaterials as a Basis for Predicting Adverse Outcome

Penny Nymark; Pekka Kohonen; Vesa Hongisto; Roland C. Grafström

An immense variety of different types of engineered nanomaterials are currently being developed and increasingly applied to consumer products. Importantly, engineered nanomaterials may pose unexplored adverse health effects because of their small size. Particularly in occupational settings, the dustiness of certain engineered nanomaterials involves risk of inhalation and influences on lung function. These facts call for quick and cost-effective safety testing practices, such as that obtained through multiparametric high-throughput screening using cultured human lung cells. The predictive value of such in vitro-based testing depends partly on the effectiveness of coverage of the mechanisms underlying toxicity effects. The concept of adverse outcome pathways covers the array of causative effects starting from a molecular initiating event via cellular-, organ-, individual-, and population-level effects. Screening for adverse outcome pathway-related effects that drive the eventual toxic outcome provides a good basis for developing predictive testing methods and data-driven integrated testing strategies for hazard and risk assessment. Temporal and inherited genomic changes are likely to drive many adverse responses to engineered nanomaterials, such as multiwalled carbon nanotubes, of which one specific form has recently been evaluated as possibly carcinogenic. Here, we briefly describe current state-of-the-art strategies for analyzing and understanding genomic influences of engineered nanomaterial exposure, including the selected focus on lung disease, and strategies for using mechanistic knowledge to predict and prevent adverse outcome.


Cancer Research | 2013

Abstract 3847: High-throughput 3D screening reveals differences in drug sensitivities between culture models of JIMT1 breast cancer cells .

Vesa Hongisto; Sandra Nyberg; Vidal Fey; John-Patrick Mpindi; Olli Kallioniemi; Merja Perälä

Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC The traditional method for studying cancer in vitro is to grow immortalized cancer cells in two-dimensional (2D) monolayers on plastic. However, many cellular features are impaired in these unnatural conditions and big alterations in gene expression in comparison to tumors have been reported. Three-dimensional (3D) cell culture models have become increasingly popular and are suggested to be better models than 2D monolayers due to improved cell-to-cell contacts and structures that resemble in vivo architecture. The aim of this study was to develop a simple high-throughput 3D drug screening method and to compare drug responses in JIMT1 breast cancer cells when grown in 2D, in polyHEMA coated anchorage independent 3D models and in Matrigel on-top 3D cell culture models. We screened 102 compounds with multiple concentrations and biological replicates for their effects on cell proliferation. The cells were either treated immediately upon plating or they were allowed to grow in 3D for four days prior to the drug treatment. Big variations in drug responses were observed between the models indicating that comparisons of culture model influenced drug sensitivities cannot be made based on effects of a single drug. However, we show with the 63 most prominent drugs that, in general, JIMT1 cells grown on Matrigel were significantly more sensitive to drugs than cells grown in 2D cultures, while responses of cells grown in polyHEMA resembled those of 2D. Furthermore, comparison of gene expression profiles of the cell culture models to xenograft tumors indicated that cells cultured in Matrigel and as xenografts most closely resembled each other. In this study we also suggest that 3D cultures can provide a platform for systematic experimentation of larger compound collections in a high-throughput mode and be used as alternatives for traditional 2D screens towards better comparability to in vivo state. Citation Format: Vesa J. Hongisto, Sandra Nyberg, Vidal Fey, John-Patrick Mpindi, Olli Kallioniemi, Merja Perala. High-throughput 3D screening reveals differences in drug sensitivities between culture models of JIMT1 breast cancer cells . [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 3847. doi:10.1158/1538-7445.AM2013-3847

Collaboration


Dive into the Vesa Hongisto's collaboration.

Top Co-Authors

Avatar

Merja Perälä

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eldri U. Due

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge