Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vi Lytle is active.

Publication


Featured researches published by Vi Lytle.


Reviews of Geophysics | 2001

Snow on Antarctic sea ice

Ra Massom; Hajo Eicken; Christian Hass; Martin O. Jeffries; Mark R. Drinkwater; Matthew Sturm; Ap Worby; Xingren Wu; Vi Lytle; Shuki Ushio; Kim Morris; P Reid; Stephen G. Warren; Ian Allison

Snow on Antarctic sea ice plays a complex and highly variable role in air-sea-ice interaction processes and the Earths climate system. Using data collected mostly during the past 10 years, this paper reviews the following topics: snow thickness and snow type and their geographical and seasonal variations; snow grain size, density, and salinity; frequency of occurrence of slush; thermal conductivity, snow surface temperature, and temperature gradients within snow; and the effect of snow thickness on albedo. Major findings include large regional and seasonal differences in snow properties and thicknesses; the consequences of thicker snow and thinner ice in the Antarctic relative to the Arctic (e.g., the importance of flooding and snow-ice formation); the potential impact of increasing snowfall resulting from global climate change; lower observed values of snow thermal conductivity than those typically used in models; periodic large-scale melt in winter; and the contrast in summer melt processes between the Arctic and the Antarctic. Both climate modeling and remote sensing would benefit by taking account of the differences between the two polar regions.


Journal of Geophysical Research | 1998

Winter snow cover variability on East Antarctic sea ice

Ra Massom; Vi Lytle; Ap Worby; Ian Allison

Copyright 1998 by the American Geophysical Union. Analysis of the first detailed data set of snow characteristics collected over East Antarctic sea ice in winter confirms that on small scales, snow on Antarctic sea ice is highly variable in both thickness and properties. High-amplitude cyclical variability in atmospheric forcing related to the passage of storms is responsible for the high degree of textural heterogeneity observed. Changes in snow properties were examined over a 3-week period, during which a largely icy snow cover, formed at near-freezing temperatures, metamorphosed to snow in which facetted crystals and depth hoar dominated, as the air temperature plummeted. Even on flat ice, significant localized thickening of snow occurs in the form of barchan dunes. Although we observed great variability in snow thickness and properties on local scales, overall snow thickness distribution and the complex textural assemblage of snow types are similar from region to region. Similar observations were made by Sturm et al. [1998] in West Antarctica. Large-scale similarities are also apparent in mean snow density, grain size, and bulk snow salinity, although high variability is again found across individual floes. Rapid depth hoar formation is a ubiquitous process that greatly affects the density, texture, grain size, and effective thermal conductivity of the snow cover. The observed heterogeneity results in varying snow effective thermal conductivities. The mean bulk effective thermal conductivity, computed from the proportion of observed snow types, is 0.164 W m-1 K-1, significantly lower than values typically used in large-scale sea ice modeling but similar to that derived by Sturm et al. [1998] in a near-simultaneous experiment in the Bellingshausen and Ross Seas. It varies from 0.097 to 0.383 W m-1 K-1 in different snow pits. The findings support those of Sturm et al. [1998] that periodic flooding and subsequent snow ice formation, which are also ubiquitous processes, effectively diminish the degree to which basal snow processes create inhomogeneities in the snow pack.


Journal of Geophysical Research | 1996

Seasonal and interannual variations of the oceanic heat flux under a landfast Antarctic sea ice cover

Petra Heil; Ian Allison; Vi Lytle

A multilayer thermodynamic model is used to simulate sea ice growth for 12 years between 1958 and 1986 in the vicinity of the Australian station Mawson on the coast of East Antarctica. The atmospheric forcing data for the model are derived from radiosonde profiles and from surface measurements. Global radiation data are available for 4 years, and we use these measurements for comparison with the results of a Zillman-type model for global radiation. Combining the thermodynamic model with sea ice thickness measurements for 12 years, we solve the energy balance equation for the oceanic heat flux. The oceanic heat flux is not constant but changes with time within the year and from year to year. The oceanic heat flux averages 7.9 W/m2, and the yearly means vary between 5 and 12 W/m2. Seasonal values of the oceanic heat flux range from 0 to 18 W/m2. From the yearly averaged values a decadal trend is evident: During the first years that were analyzed the yearly average lies well above 10 W/m2; then in the mid-1970s a decrease to 9 W/m2 occurs, while for all later years the values are ∼6–8 W/m2. In general, the oceanic heat flux increases from the start of the fast ice formation season in early April until it breaks out in December or January. To compare the calculated oceanic heat fluxes for different years, we divide the total ice season into three characteristic time regimes of the sea ice growth and calculate the averaged oceanic heat fluxes for each regime. For the first regime (through August) the mean flux is 2.7 W/m2, for the middle regime (September) it is 8.4 W/m2, and for the final regime (October–January) it is 17 W/m2. We discuss the results of our model calculations in conjunction with current meter observations, which give evidence of seasonally varying intrusions of relatively warm Circumpolar Deep Water into Prydz Bay. Comparison of passive microwave data of sea ice extent and concentration (from the scanning multichannel microwave radiometer sensor) with the model results reveals a correlation between the magnitude of the oceanic heat flux and local features such as polynyas.


IEEE Transactions on Geoscience and Remote Sensing | 2007

Ultrawideband Radar Measurements of Thickness of Snow Over Sea Ice

P. Kanagaratnam; Thorsten Markus; Vi Lytle; Brandon Heavey; Peter Jansen; Glenn Prescott; Sivaprasad Gogineni

An accurate knowledge of snow thickness and its variability over sea ice is crucial in determining the overall polar heat and freshwater budget, which influences the global climate. Recently, algorithms have been developed to extract snow thicknesses from satellite passive microwave data. However, validation of these data over the large footprint of the passive microwave sensor has been a challenge. The only method used thus far has been with meter sticks during ship cruises. To address this problem, we developed an ultrawideband frequency-modulated continuous-wave radar to measure the snow thickness over sea ice. We synthesized a very linear chirp signal by using a phase-locked loop with a digitally generated chirp signal as a reference to obtain a fine-range resolution. The radar operates over the frequency range from 2-8 GHz. We made snow-thickness measurements over the Antarctic sea ice by operating the radar from a sled in September and October 2003. We performed radar measurements over 11 stations with varying snow thicknesses between 4 and 85 cm. We observed an excellent agreement between radar estimates of snow thickness with physical measurements, achieving a correlation coefficient of 0.95 and a vertical resolution of about 3 cm. Comparison of simulated radar waveforms using a simple transmission line model with the measurements confirms our expectations that echoes from snow-covered sea ice are dominated by reflections from air-snow and snow-ice interfaces.


Annals of Glaciology | 2006

ARISE (Antarctic Remote Ice Sensing Experiment) in the East 2003: Validation of Satellite-derived Sea-ice Data Product

Ra Massom; Ap Worby; Vi Lytle; Thorsten Markus; Ian Allison; Theodore A. Scambos; Hiroyuki Enomoto; Kazutaka Tateyama; Terence Haran; Josefino C. Comiso; Andreas Pfaffling; Takeshi Tamura; Atsuhiro Muto; Pannir Kanagaratnam; Barry Giles; Nw Young; Glenn Hyland; Erica L. Key

Abstract Preliminary results are presented from the first validation of geophysical data products (ice concentration, Snow thickness on Sea ice (hs) and ice temperature (TI) from the NASA EOS Aqua AMSR-E Sensor, in East Antarctica (in September–October 2003). The challenge of collecting Sufficient measurements with which to validate the coarse-resolution AMSR-E data products adequately was addressed by means of a hierarchical approach, using detailed in situ measurements, digital aerial photography and other Satellite data. Initial results from a circumnavigation of the experimental Site indicate that, at least under cold conditions with a dry Snow cover, there is a reasonably close agreement between Satellite- and aerial-photo-derived ice concentrations, i.e. 97.2±3.6% for NT2 and 96.5±2.5% for BBA algorithms vs 94.3% for the aerial photos. In general, the AMSR-E concentration represents a Slight overestimate of the actual concentration, with the largest discrepancies occurring in regions containing a relatively high proportion of thin ice. The AMSR-E concentrations from the NT2 and BBA algorithms are Similar on average, although differences of up to 5% occur in places, again related to thin-ice distribution. The AMSR-E ice temperature (TI) product agrees with coincident Surface measurements to approximately 0.5˚C in the limited dataset analyzed. Regarding Snow thickness, the AMSR hs retrieval is a Significant underestimate compared to in situ measurements weighted by the percentage of thin ice (and open water) present. For the case Study analyzed, the underestimate was 46% for the overall average, but 23% compared to Smooth-ice measurements. The Spatial distribution of the AMSR-E hs product follows an expected and consistent Spatial pattern, Suggesting that the observed difference may be an offset (at least under freezing conditions). Areas of discrepancy are identified, and the need for future work using the more extensive dataset is highlighted.


Annals of Glaciology | 2001

Sensible- and latent-heat-flux estimates over the Mertz Glacier polynya, East Antarctica, from in-flight measurements

Andrew Roberts; Ian Allison; Vi Lytle

Abstract Coastal polynyas can be regions of intense ocean-atmosphere heat transfer. In these polynyas, relatively warm ocean is exposed to cold, dry continental air, resulting in high sea-ice production rates. We have calculated ocean-atmosphere heat fluxes over an area of the Mertz Glacier polynya, East Antarctica, from atmospheric data collected in August 1999. Air-temperature and humidity data were measured using a probe extending from a helicopter undercarriage. Flights were made over the most vigorously ice-producing part of the polynya, within 20 km of the coast in southeast Buchanan Bay, both in very strong katabatic winds (20 m s–1) and during calmer conditions (5 m s–1). The total turbulent heat loss from the surface was nearly 575 W m–2 for the windy case and 250 W m–2 for the calmer one, with a ratio of sensible to latent heat in both cases of slightly more than four. These fluxes are in general agreement with other estimates of heat loss from Antarctic polynyas. Strong katabatic winds, sometimes exceeding 40 m s–1, were common in Buchanan Bay and the heat losses during the strong-wind cafe are probably typical of the region. We suggest that this inner part of the Mertz Glacier polynya has a very high ice-production rate.


Annals of Glaciology | 2011

Freeboard, snow depth and sea ice roughness in East Antarctica from in-situ and multiple satellite data

Thorsten Markus; Ra Massom; Ap Worby; Vi Lytle; Nathan T. Kurtz; Edward Maksym

Abstract In October 2003 a campaign on board the Australian icebreaker Aurora Australis had the objective to validate standard Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea-ice products. Additionally, the satellite laser altimeter on the Ice, Cloud and land Elevation Satellite (ICESat) was in operation. To capture the large-scale information on the sea-ice conditions necessary for satellite validation, the measurement strategy was to obtain large-scale sea-ice statistics using extensive sea-ice measurements in a Lagrangian approach. A drifting buoy array, spanning initially 50 km × 100 km, was surveyed during the campaign. In situ measurements consisted of 12 transects, 50–500 m, with detailed snow and ice measurements as well as random snow depth sampling of floes within the buoy array using helicopters. In order to increase the amount of coincident in situ and satellite data an approach has been developed to extrapolate measurements in time and in space. Assuming no change in snow depth and freeboard occurred during the period of the campaign on the floes surveyed, we use buoy ice-drift information as well as daily estimates of thin-ice fraction and rough-ice vs smooth-ice fractions from AMSR-E and QuikSCAT, respectively, to estimate kilometer-scale snow depth and freeboard for other days. the results show that ICESat freeboard estimates have a mean difference of 1.8 cm when compared with the in situ data and a correlation coefficient of 0.6. Furthermore, incorporating ICESat roughness information into the AMSR-E snow depth algorithm significantly improves snow depth retrievals. Snow depth retrievals using a combination of AMSR-E and ICESat data agree with in situ data with a mean difference of 2.3 cm and a correlation coefficient of 0.84 with a negligible bias.


Annals of Glaciology | 2001

Ice formation in the Mertz Glacier polynya, East Antarctica, during Winter

Vi Lytle; Ap Worby; Ra Massom; M.J. Paget; Ian Allison; Xingren Wu; Andrew Roberts

Abstract During August 1999, detailed data were collected in the Mertz Glacier polynya along the coast of Antarctica on the drift of newly forming ice tracked with drifting buoys and the ice thickness in the vicinity of the buoys over time. Using these measurements, we estimate the ice-growth rate and the processes which are important in the early stages of ice formation. We find that although there is rapid frazil formation in the open-water areas near the coast and Mertz Glacier Tongue, this frazil ice can take several days to consolidate. A period of warmer weather, when temperatures reached as high as 0°C, delayed the consolidation of the frazil for > 4.5 days. The undeformed new-ice growth rate averaged about 4 cm d-1 for the first 5 days of formation. Ridging and rafting doubled the total growth rate to an average of 8 cm d-1. Blowing and falling snow was incorporated into the surface of the newly forming ice, with 16 of 22 ice cores having some snow in the top few centimeters.


Eos, Transactions American Geophysical Union | 1996

Winter ocean/sea ice interactions studied in the East Antarctic

Ap Worby; Nl Bindoff; Vi Lytle; Ian Allison; Ra Massom

An experiment to identify changes in water mass properties as a result of sea ice growth and deformation was conducted in a 110×110 km region of the Antarctic pack ice near 64°S, 140°E in August 1995. This was the first intensive winter-time study in this region, which is thought to be high in ice production and active in bottom water formation [Foster, 1995; Gordon and Tchernia, 1972]. The information gathered is important in understanding the role sea ice plays in the climate system and for developing and validating combined ocean-ice-atmosphere models.


Journal of Geophysical Research | 2000

Wintertime heat flux to the underside of East Antarctic pack ice

Vi Lytle; Ra Massom; Nl Bindoff; Ap Worby; Ian Allison

In the sea ice zone, there is a delicate balance between the heat loss from the surface of the snow-covered sea ice and the heat supplied to the underside of the ice by the deep ocean. The difference between these two heat fluxes determines the amount of ice growth or melt. In global atmospheric models the ocean heat flux is often prescribed and has been shown to be an important parameter in determining how thick sea ice will grow thermodynamically. Although this ocean heat flux is a critical component in climate models, there are relatively few direct measurements in the Antarctic sea ice region. In this study we use measurements of the temperature gradient through the sea ice and of ice growth during a field experiment to estimate the ocean heat flux in the East Antarctic region around 140°E, 65°S during August 1995. We find an average ocean heat flux of 13.0–14.5 W m−2. This is more than twice the winter values reported in the western Weddell Sea under multiyear sea ice but similar to the 19 W m−2 that has been estimated for the entire Weddell Gyre. During August 1995 the air temperature showed large variations, ranging from near freezing to −30°C. This resulted in the thicker ice floes (50–60 cm) alternating between a no-growth or melting condition and an active ice growth at the base. However, it is likely that the thicker (>60 cm), ridged portions of the floes were continually melting.

Collaboration


Dive into the Vi Lytle's collaboration.

Top Co-Authors

Avatar

Ian Allison

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ra Massom

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar

Ap Worby

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar

Petra Heil

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar

Thorsten Markus

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Nl Bindoff

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

Xingren Wu

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar

Andrew Roberts

Naval Postgraduate School

View shared research outputs
Top Co-Authors

Avatar

Hajo Eicken

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Josefino C. Comiso

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge