Vibhakar C. Kotak
Center for Neural Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vibhakar C. Kotak.
The Journal of Neuroscience | 2005
Vibhakar C. Kotak; Sho Fujisawa; Fanyee Anja Lee; Omkar Karthikeyan; Chiye Aoki; Dan H. Sanes
Developmental hearing impairments compromise sound discrimination, speech acquisition, and cognitive function; however, the adjustments of functional properties in the primary auditory cortex (A1) remain unknown. We induced sensorineural hearing loss (SNHL) in developing gerbils and then reared the animals for several days. The intrinsic membrane and synaptic properties of layer 2/3 pyramidal neurons were subsequently examined in a thalamocortical brain slice preparation with whole-cell recordings and electron microscopic immunocytochemistry. SNHL neurons displayed a depolarized resting membrane potential, an increased input resistance, and a higher incidence of sustained firing. They also exhibited significantly larger thalamocortically and intracortically evoked excitatory synaptic responses, including a greater susceptibility to the NMDA receptor antagonist AP-5 and the NR2B subunit antagonist ifenprodil. This correlated with an increase in NR2B labeling of asymmetric synapses, as visualized ultrastructurally. Furthermore, decreased frequency and increased amplitude of miniature EPSCs (mEPSCs) in SNHL neurons suggest that a decline in presynaptic release properties is compensated by an increased excitatory response. To verify that the increased thalamocortical excitation was elicited by putative monosynaptic connections, minimum amplitude ventral medial geniculate nucleus-evoked EPSCs were recorded. These minimum-evoked responses were of larger amplitude, and the NMDAergic currents were also larger and longer in SNHL neurons. These findings were supported by significantly longer AP-5-sensitive durations and larger amplitudes of mEPSCs. Last, the amplitudes of intracortically evoked monosynaptic and polysynaptic GABAergic inhibitory synaptic responses were significantly smaller in SNHL neurons. These alterations in cellular properties after deafness reflect an attempt by A1 to sustain an operative level of cortical excitability that may involve homeostatic mechanisms.
Cerebral Cortex | 2008
Vibhakar C. Kotak; Anne E. Takesian; Dan H. Sanes
Inhibitory neurotransmission is a critical determinant of neuronal network gain and dynamic range, suggesting that network properties are shaped by activity during development. A previous study demonstrated that sensorineural hearing loss (SNHL) in gerbils leads to smaller inhibitory potentials in L2/3 pyramidal neurons in the thalamorecipient auditory cortex, ACx. Here, we explored the mechanisms that account for proper maturation of γ-amino butyric acid (GABA)ergic transmission. SNHL was induced at postnatal day (P) 10, and whole-cell voltage-clamp recordings were obtained from layer 2/3 pyramidal neurons in thalamocortical slices at P16–19. SNHL led to an increase in the frequency of GABAzine-sensitive (antagonist) spontaneous (s) and miniature (m) inhibitory postsynaptic currents (IPSCs), accompanied by diminished amplitudes and longer durations. Consistent with this, the amplitudes of minimum-evoked IPSCs were also reduced while their durations were longer. The α1- and β2/3 subunit–specific agonists zolpidem and loreclezole increased control but not SNHL sIPSC durations. To test whether SNHL affected the maturation of GABAergic transmission, sIPSCs were recorded at P10. These sIPSCs resembled the long SNHL sIPSCs. Furthermore, zolpidem and loreclezole were ineffective in increasing their durations. Together, these data strongly suggest that the presynaptic release properties and expression of key postsynaptic GABAA receptor subunits are coregulated by hearing.
The Journal of Neuroscience | 2007
Han Xu; Vibhakar C. Kotak; Dan H. Sanes
Although sensorineural hearing loss (SNHL) is known to compromise central auditory structure and function, the impact of milder forms of hearing loss on cellular neurophysiology remains mostly undefined. We induced conductive hearing loss (CHL) in developing gerbils, reared the animals for 8–13 d, and subsequently assessed the temporal features of auditory cortex layer 2/3 pyramidal neurons in a thalamocortical brain slice preparation with whole-cell recordings. Repetitive stimulation of the ventral medial geniculate nucleus (MGv) evoked robust short-term depression of the postsynaptic potentials in control neurons, and this depression increased monotonically at higher stimulation frequencies. In contrast, CHL neurons displayed a faster rate of synaptic depression and a smaller asymptotic amplitude. Moreover, the latency of MGv evoked potentials was consistently longer in CHL neurons for all stimulus rates. A separate assessment of spike frequency adaptation in response to trains of injected current pulses revealed that CHL neurons displayed less adaptation compared with controls, although there was an increase in temporal jitter. For each of these properties, nearly identical findings were observed for SNHL neurons. Together, these data show that CHL significantly alters the temporal properties of auditory cortex synapses and spikes, and this may contribute to processing deficits that attend mild to moderate hearing loss.
The Journal of Neuroscience | 2010
Anne E. Takesian; Vibhakar C. Kotak; Dan H. Sanes
Short-term changes in synaptic gain support information processing throughout the CNS, yet we know little about the developmental regulation of such plasticity. Here we report that auditory experience is necessary for the normal maturation of synaptic inhibitory short-term plasticity (iSTP) in the auditory cortex, and that presynaptic GABAB receptors regulate this development. Moderate or severe hearing loss was induced in gerbils, and iSTP was characterized by measuring inhibitory synaptic current amplitudes in response to repetitive stimuli. We reveal a profound developmental shift of iSTP from depressing to facilitating after the onset of hearing. Even moderate hearing loss prevented this shift. This iSTP change was mediated by a specific class of inhibitory interneurons, the low-threshold spiking cells. Further, using paired recordings, we reveal that presynaptic GABAB receptors at interneuron-pyramidal connections regulate iSTP in an experience-dependent manner. This novel synaptic mechanism may support the emergence of mature temporal processing in the auditory cortex.
European Journal of Neuroscience | 1997
Vibhakar C. Kotak; Dan H. Sanes
Decreased excitatory synaptic activity during development often leads to pre‐ and postsynaptic atrophy, as assessed anatomically. The present study considers the effect of decreased excitatory transmission on the maturation of synaptic strength. Towards this end, cochlear nucleus neurons, which project to the ipsilateral lateral superior olive (LSO), were denervated in gerbils at postnatal day 7, before the onset of hearing. This manipulation was intended to disrupt spontaneous glutamatergic transmission in the LSO while sparing the glycinergic afferents from the medial nucleus of the trapezoid body (MNTB). Afferent‐evoked synaptic activity was assessed 1–6 days after ablation in a brain slice preparation using whole‐cell current‐ and voltage‐clamp recordings. In control animals, ipsilaterally evoked excitatory postsynaptic potentials (EPSPs) were present in 91% of neurons tested, but were observed in only 60% of neurons following cochlea removal. The maximum EPSP amplitude was significantly smaller in manipulated neurons compared with controls, and this was accompanied by a higher incidence of ipsilaterally evoked inhibitory postsynaptic potentials (IPSPs). To study the efficacy of excitatory synapses in greater detail, voltage‐clamp recordings were made in the presence of strychnine and AP‐5 [d(O)‐2‐amino‐5‐phosphonopentanoic acid]. The minimum excitatory postsynaptic current (EPSC) amplitude, presumed to reflect the efficacy of a single glutamatergic afferent, was ∼40% smaller in manipulated neurons. In contrast, MNTB‐evoked IPSPs were similar in neurons from control and ablated animals. However, manipulated neurons often exhibited a rebound depolarization after a hyperpolarizing current pulse or an afferent‐evoked IPSP. In 70% of manipulated neurons, synaptically evoked rebound depolarizations were reduced, but not eliminated, by glutamate receptor antagonists. The glycine receptor antagonist strychnine did eliminate the IPSP‐associated depolarization in these neurons. Collectively, these results suggest that functional denervation of excitatory afferents decreases their synaptic efficacy as result of both cell loss as well as decreased strength of individual surviving synapses.
Journal of Neurophysiology | 2012
Anne E. Takesian; Vibhakar C. Kotak; Dan H. Sanes
The developmental plasticity of excitatory synapses is well established, particularly as a function of age. If similar principles apply to inhibitory synapses, then we would expect manipulations during juvenile development to produce a greater effect and experience-dependent changes to persist into adulthood. In this study, we first characterized the maturation of cortical inhibitory synapse function from just before the onset of hearing through adulthood. We then examined the long-term effects of developmental conductive hearing loss (CHL). Whole cell recordings from gerbil thalamocortical brain slices revealed a significant decrease in the decay time of inhibitory currents during the first 3 mo of normal development. When assessed in adults, developmental CHL led to an enduring decrease of inhibitory synaptic strength, whereas the maturation of synaptic decay time was only delayed. Early CHL also depressed the maximum discharge rate of fast-spiking, but not low-threshold-spiking, inhibitory interneurons. We then asked whether adult onset CHL had a similar effect, but neither inhibitory current amplitude nor decay time was altered. Thus inhibitory synapse function displays a protracted development during which deficits can be induced by juvenile, but not adult, hearing loss. These long-lasting changes to inhibitory function may contribute to the auditory processing deficits associated with early hearing loss.
PLOS Biology | 2010
Pablo E. Jercog; Gytis Svirskis; Vibhakar C. Kotak; Dan H. Sanes; John Rinzel
In order to localize sounds in the environment, the auditory system detects and encodes differences in signals between each ear. The exquisite sensitivity of auditory brain stem neurons to the differences in rise time of the excitation signals from the two ears allows for neuronal encoding of microsecond interaural time differences.
Cerebral Cortex | 2008
Emma C. Sarro; Vibhakar C. Kotak; Dan H. Sanes; Chiye Aoki
We have shown previously that auditory experience regulates the maturation of excitatory synapses in the auditory cortex (ACx). In this study, we used electron microscopic immunocytochemistry to determine whether the heightened excitability of the ACx following neonatal sensorineural hearing loss (SNHL) also involves pre- or postsynaptic alterations of GABAergic synapses. SNHL was induced in gerbils just prior to the onset of hearing (postnatal day 10). At P17, the gamma-aminobutyri acid type A (GABA(A)) receptors beta2/3-subunit (GABA(A)beta2/3) clusters residing at plasma membranes in layers 2/3 of ACx was reduced significantly in size (P < 0.05) and number (P < 0.005), whereas the overall number of immunoreactive puncta (intracellular + plasmalemmal) remained unchanged. The reduction of GABA(A)beta2/3 was observed along perikaryal plasma membranes of excitatory neurons but not of GABAergic interneurons. This cell-specific change can contribute to the enhanced excitability of SNHL ACx. Presynaptically, GABAergic axon terminals were significantly larger but less numerous and contained 47% greater density of glutamic acid decarboxylase immunoreactivity (P < 0.05). This suggests that GABA synthesis may be upregulated by a retrograde signal arising from lowered levels of postsynaptic GABA(A)R. Thus, both, the pre- and postsynaptic sides of inhibitory synapses that form upon pyramidal neurons of the ACx are regulated by neonatal auditory experience.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Vibhakar C. Kotak; Andrew D. Breithaupt; Dan H. Sanes
Severe hearing loss during early development is associated with deficits in speech and language acquisition. Although functional studies have shown a deafness-induced alteration of synaptic strength, it is not known whether long-term synaptic plasticity depends on auditory experience. In this study, sensorineural hearing loss (SNHL) was induced surgically in developing gerbils at postnatal day 10, and excitatory synaptic plasticity was examined subsequently in a brain slice preparation that preserves the thalamorecipient auditory cortex. Extracellular stimuli were applied at layer 6 (L6), whereas evoked excitatory synaptic potentials (EPSPs) were recorded from L5 neurons by using a whole-cell current clamp configuration. In control neurons, the conditioning stimulation of L6 significantly altered EPSP amplitude for at least 1 h. Approximately half of neurons displayed long-term potentiation (LTP), whereas the other half displayed long-term depression (LTD). In contrast, SNHL neurons displayed only LTD after the conditioning stimulation of L6. Finally, the vast majority of neurons recorded from control prehearing animals (postnatal days 9–11) displayed LTD after L6 stimulation. Thus, normal auditory experience may be essential for the maturation of synaptic plasticity mechanisms.
Nature Neuroscience | 2017
Jordane Dimidschstein; Qian Chen; Robin Tremblay; Stephanie L. Rogers; Giuseppe Antonio Saldi; Lihua Guo; Qing Xu; Runpeng Liu; Congyi Lu; Jianhua Chu; Michael C. Avery; Mohammad S. Rashid; Myungin Baek; Amanda L. Jacob; Gordon B. Smith; Daniel E. Wilson; Georg Kosche; Illya Kruglikov; Tomasz Rusielewicz; Vibhakar C. Kotak; Todd M. Mowery; Stewart A. Anderson; Edward M. Callaway; Jeremy S. Dasen; David Fitzpatrick; Valentina Fossati; Michael A. Long; Scott Noggle; John H. Reynolds; Dan H. Sanes
A fundamental impediment to understanding the brain is the availability of inexpensive and robust methods for targeting and manipulating specific neuronal populations. The need to overcome this barrier is pressing because there are considerable anatomical, physiological, cognitive and behavioral differences between mice and higher mammalian species in which it is difficult to specifically target and manipulate genetically defined functional cell types. In particular, it is unclear the degree to which insights from mouse models can shed light on the neural mechanisms that mediate cognitive functions in higher species, including humans. Here we describe a novel recombinant adeno-associated virus that restricts gene expression to GABAergic interneurons within the telencephalon. We demonstrate that the viral expression is specific and robust, allowing for morphological visualization, activity monitoring and functional manipulation of interneurons in both mice and non-genetically tractable species, thus opening the possibility to study GABAergic function in virtually any vertebrate species.