Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vicente Azorin-Peris is active.

Publication


Featured researches published by Vicente Azorin-Peris.


Journal of Biomedical Optics | 2011

Motion-compensated noncontact imaging photoplethysmography to monitor cardiorespiratory status during exercise

Yu Sun; Sijung Hu; Vicente Azorin-Peris; Stephen E. Greenwald; Jonathon A. Chambers; Yisheng Zhu

With the advance of computer and photonics technology, imaging photoplethysmography [(PPG), iPPG] can provide comfortable and comprehensive assessment over a wide range of anatomical locations. However, motion artifact is a major drawback in current iPPG systems, particularly in the context of clinical assessment. To overcome this issue, a new artifact-reduction method consisting of planar motion compensation and blind source separation is introduced in this study. The performance of the iPPG system was evaluated through the measurement of cardiac pulse in the hand from 12 subjects before and after 5 min of cycling exercise. Also, a 12-min continuous recording protocol consisting of repeated exercises was taken from a single volunteer. The physiological parameters (i.e., heart rate, respiration rate), derived from the images captured by the iPPG system, exhibit functional characteristics comparable to conventional contact PPG sensors. Continuous recordings from the iPPG system reveal that heart and respiration rates can be successfully tracked with the artifact reduction method even in high-intensity physical exercise situations. The outcome from this study thereby leads to a new avenue for noncontact sensing of vital signs and remote physiological assessment, with clear applications in triage and sports training.


Journal of Biomedical Optics | 2012

Noncontact imaging photoplethysmography to effectively access pulse rate variability.

Yu Sun; Sijung Hu; Vicente Azorin-Peris; Roy S. Kalawsky; Stephen E. Greenwald

Abstract. Noncontact imaging photoplethysmography (PPG) can provide physiological assessment at various anatomical locations with no discomfort to the patient. However, most previous imaging PPG (iPPG) systems have been limited by a low sample frequency, which restricts their use clinically, for instance, in the assessment of pulse rate variability (PRV). In the present study, plethysmographic signals are remotely captured via an iPPG system at a rate of 200 fps. The physiological parameters (i.e., heart and respiration rate and PRV) derived from the iPPG datasets yield statistically comparable results to those acquired using a contact PPG sensor, the gold standard. More importantly, we present evidence that the negative influence of initial low sample frequency could be compensated via interpolation to improve the time domain resolution. We thereby provide further strong support for the low-cost webcam-based iPPG technique and, importantly, open up a new avenue for effective noncontact assessment of multiple physiological parameters, with potential applications in the evaluation of cardiac autonomic activity and remote sensing of vital physiological signs.


Journal of Biomedical Optics | 2012

Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam

Yu Sun; Charlotte Papin; Vicente Azorin-Peris; Roy S. Kalawsky; Stephen E. Greenwald; Sijung Hu

Imaging photoplethysmography (PPG) is able to capture useful physiological data remotely from a wide range of anatomical locations. Recent imaging PPG studies have concentrated on two broad research directions involving either high-performance cameras and or webcam-based systems. However, little has been reported about the difference between these two techniques, particularly in terms of their performance under illumination with ambient light. We explore these two imaging PPG approaches through the simultaneous measurement of the cardiac pulse acquired from the face of 10 male subjects and the spectral characteristics of ambient light. Measurements are made before and after a period of cycling exercise. The physiological pulse waves extracted from both imaging PPG systems using the smoothed pseudo-Wigner-Ville distribution yield functional characteristics comparable to those acquired using gold standard contact PPG sensors. The influence of ambient light intensity on the physiological information is considered, where results reveal an independent relationship between the ambient light intensity and the normalized plethysmographic signals. This provides further support for imaging PPG as a means for practical noncontact physiological assessment with clear applications in several domains, including telemedicine and homecare.


Journal of Healthcare Engineering | 2013

Opto-Physiological Modeling Applied to Photoplethysmographic Cardiovascular Assessment

Sijung Hu; Vicente Azorin-Peris; Jia Zheng

This paper presents opto-physiological (OP) modeling and its application in cardiovascular assessment techniques based on photoplethysmography (PPG). Existing contact point measurement techniques, i.e., pulse oximetry probes, are compared with the next generation non-contact and imaging implementations, i.e., non-contact reflection and camera-based PPG. The further development of effective physiological monitoring techniques relies on novel approaches to OP modeling that can better inform the design and development of sensing hardware and applicable signal processing procedures. With the help of finite-element optical simulation, fundamental research into OP modeling of photoplethysmography is being exploited towards the development of engineering solutions for practical biomedical systems. This paper reviews a body of research comprising two OP models that have led to significant progress in the design of transmission mode pulse oximetry probes, and approaches to 3D blood perfusion mapping for the interpretation of cardiovascular performance.


Sensors | 2015

A Multi-Channel Opto-Electronic Sensor to Accurately Monitor Heart Rate against Motion Artefact during Exercise

Abdullah Alzahrani; Sijung Hu; Vicente Azorin-Peris; Laura A. Barrett; Dale W. Esliger; Matthew James Hayes; Shafique Akbare; Jerome Achart; Sylvain Kuoch

This study presents the use of a multi-channel opto-electronic sensor (OEPS) to effectively monitor critical physiological parameters whilst preventing motion artefact as increasingly demanded by personal healthcare. The aim of this work was to study how to capture the heart rate (HR) efficiently through a well-constructed OEPS and a 3-axis accelerometer with wireless communication. A protocol was designed to incorporate sitting, standing, walking, running and cycling. The datasets collected from these activities were processed to elaborate sport physiological effects. t-test, Bland-Altman Agreement (BAA), and correlation to evaluate the performance of the OEPS were used against Polar and Mio-Alpha HR monitors. No differences in the HR were found between OEPS, and either Polar or Mio-Alpha (both p > 0.05); a strong correlation was found between Polar and OEPS (r: 0.96, p < 0.001); the bias of BAA 0.85 bpm, the standard deviation (SD) 9.20 bpm, and the limits of agreement (LOA) from −17.18 bpm to +18.88 bpm. For the Mio-Alpha and OEPS, a strong correlation was found (r: 0.96, p < 0.001); the bias of BAA 1.63 bpm, SD 8.62 bpm, LOA from −15.27 bpm to +18.58 bpm. These results demonstrate the OEPS to be capable of carrying out real time and remote monitoring of heart rate.


IEEE Transactions on Biomedical Circuits and Systems | 2012

BioThreads: A Novel VLIW-Based Chip Multiprocessor for Accelerating Biomedical Image Processing Applications

David Stevens; Vassilios A. Chouliaras; Vicente Azorin-Peris; Jia Zheng; Angelos Echiadis; Sijung Hu

We discuss BioThreads, a novel, configurable, extensible system-on-chip multiprocessor and its use in accelerating biomedical signal processing applications such as imaging photoplethysmography (IPPG). BioThreads is derived from the LE1 open-source VLIW chip multiprocessor and efficiently handles instruction, data and thread-level parallelism. In addition, it supports a novel mechanism for the dynamic creation, and allocation of software threads to uncommitted processor cores by implementing key POSIX Threads primitives directly in hardware, as custom instructions. In this study, the BioThreads core is used to accelerate the calculation of the oxygen saturation map of living tissue in an experimental setup consisting of a high speed image acquisition system, connected to an FPGA board and to a host system. Results demonstrate near-linear acceleration of the core kernels of the target blood perfusion assessment with increasing number of hardware threads. The BioThreads processor was implemented on both standard-cell and FPGA technologies; in the first case and for an issue width of two, full real-time performance is achieved with 4 cores whereas on a mid-range Xilinx Virtex6 device this is achieved with 10 dual-issue cores. An 8-core LE1 VLIW FPGA prototype of the system achieved 240 times faster execution time than the scalar Microblaze processor demonstrating the scalability of the proposed solution to a state-of-the-art FPGA vendor provided soft CPU core.


Biosensors | 2015

A Comparative Study of Physiological Monitoring with a Wearable Opto-Electronic Patch Sensor (OEPS) for Motion Reduction

Abdullah Alzahrani; Sijung Hu; Vicente Azorin-Peris

This paper presents a comparative study in physiological monitoring between a wearable opto-electronic patch sensor (OEPS) comprising a three-axis Microelectromechanical systems (MEMs) accelerometer (3MA) and commercial devices. The study aims to effectively capture critical physiological parameters, for instance, oxygen saturation, heart rate, respiration rate and heart rate variability, as extracted from the pulsatile waveforms captured by OEPS against motion artefacts when using the commercial probe. The protocol involved 16 healthy subjects and was designed to test the features of OEPS, with emphasis on the effective reduction of motion artefacts through the utilization of a 3MA as a movement reference. The results show significant agreement between the heart rates from the reference measurements and the recovered signals. Significance of standard deviation and error of mean yield values of 2.27 and 0.65 beats per minute, respectively; and a high correlation (0.97) between the results of the commercial sensor and OEPS. T, Wilcoxon and Bland-Altman with 95% limit of agreement tests were also applied in the comparison of heart rates extracted from these sensors, yielding a mean difference (MD: 0.08). The outcome of the present work incites the prospects of OEPS on physiological monitoring during physical activities.


Proceedings of SPIE | 2011

Detection of physiological changes after exercise via a remote optophysiological imaging system

Yu Sun; Sijung Hu; Vicente Azorin-Peris; Jia Zheng; Stephen E. Greenwald; Jonathon A. Chambers; Yisheng Zhu

A study of blood perfusion mapping was performed with a remote opto-physiological imaging (OPI) system coupling a sensitive CMOS camera and a custom-built resonant cavity light emitting diode (RCLED) ringlight. The setup is suitable for the remote assessment of blood perfusion in tissue over a wide range of anatomical locations. The purpose of this study is to evaluate the reliability and stability of the OPI system when measuring a cardiovascular variable of clinical interest, in this case, heart rate. To this end, the non-contact and contact photoplethysmographic (PPG) signals obtained from the OPI system and conventional PPG sensor were recorded simultaneously from each of 12 subjects before and after 5-min of cycling exercise. The time-frequency representation (TFR) method was used to visualize the time-dependent behavior of the signal frequency. The physiological parameters derived from the images captured by the OPI system exhibit comparable functional characteristics to those taken from conventional contact PPG pulse waveform measurements in both the time and frequency domains. Finally and more importantly, a previously developed opto-physiological model was employed to provide a 3-D representation of blood perfusion in human tissue which could provide a new insight into clinical assessment and diagnosis of circulatory pathology in various tissue segments.


Proceedings of SPIE | 2011

Comparison of scientific CMOS camera and webcam for monitoring cardiac pulse after exercise

Yu Sun; Charlotte Papin; Vicente Azorin-Peris; Roy S. Kalawsky; Stephen E. Greenwald; Sijung Hu

In light of its capacity for remote physiological assessment over a wide range of anatomical locations, imaging photoplethysmography has become an attractive research area in biomedical and clinical community. Amongst recent iPPG studies, two separate research directions have been revealed, i.e., scientific camera based imaging PPG (iPPG) and webcam based imaging PPG (wPPG). Little is known about the difference between these two techniques. To address this issue, a dual-channel imaging PPG system (iPPG and wPPG) using ambient light as the illumination source has been introduced in this study. The performance of the two imaging PPG techniques was evaluated through the measurement of cardiac pulse acquired from the face of 10 male subjects before and after 10 min of cycling exercise. A time-frequency representation method was used to visualize the time-dependent behaviour of the heart rate. In comparison to the gold standard contact PPG, both imaging PPG techniques exhibit comparable functional characteristics in the context of cardiac pulse assessment. Moreover, the synchronized ambient light intensity recordings in the present study can provide additional information for appraising the performance of the imaging PPG systems. This feasibility study thereby leads to a new route for non-contact monitoring of vital signs, with clear applications in triage and homecare.


Proceedings of SPIE | 2014

A high performance biometric signal and image processing method to reveal blood perfusion towards 3D oxygen saturation mapping

Ryan Imms; Sijung Hu; Vicente Azorin-Peris; Michaël Trico; Ron Summers

Non-contact imaging photoplethysmography (PPG) is a recent development in the field of physiological data acquisition, currently undergoing a large amount of research to characterize and define the range of its capabilities. Contact-based PPG techniques have been broadly used in clinical scenarios for a number of years to obtain direct information about the degree of oxygen saturation for patients. With the advent of imaging techniques, there is strong potential to enable access to additional information such as multi-dimensional blood perfusion and saturation mapping. The further development of effective opto-physiological monitoring techniques is dependent upon novel modelling techniques coupled with improved sensor design and effective signal processing methodologies. The biometric signal and imaging processing platform (bSIPP) provides a comprehensive set of features for extraction and analysis of recorded iPPG data, enabling direct comparison with other biomedical diagnostic tools such as ECG and EEG. Additionally, utilizing information about the nature of tissue structure has enabled the generation of an engineering model describing the behaviour of light during its travel through the biological tissue. This enables the estimation of the relative oxygen saturation and blood perfusion in different layers of the tissue to be calculated, which has the potential to be a useful diagnostic tool.

Collaboration


Dive into the Vicente Azorin-Peris's collaboration.

Top Co-Authors

Avatar

Sijung Hu

Loughborough University

View shared research outputs
Top Co-Authors

Avatar

Stephen E. Greenwald

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Yu Sun

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jia Zheng

Loughborough University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge