Vicente Larraga
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vicente Larraga.
Vaccine | 2003
M. J. Ramiro; Juan J. Zárate; Tobias Hanke; D. Rodriguez; Juan Ramón Oreja Rodríguez; Mariano Esteban; J. Lucientes; Juan Antonio Castillo; Vicente Larraga
A heterologous prime-boost vaccination regime with DNA and recombinant vaccinia virus (rVV) vectors expressing relevant antigens has been shown to enhance specific cellular immune responses and to elicit protection against a variety of pathogens in animal models. In this paper, we describe the effectiveness of the prime-boost strategy by immunizing dogs with a plasmid carrying the gene for the LACK antigen from Leishmania infantum (DNA-LACK) followed by a booster with a rVV containing the same gene (rVV-LACK). Thereafter, animals were challenged with L. infantum to induce visceral leishmaniasis (VL). In the vaccinated dogs as compared with the controls, the outcome of the infection after challenge with a high inoculum (10(8)) of L. infantum stationary promastigotes was assessed by tissue parasite load, specific anti-Leishmania antibody production, cytokine level and development of clinical signs of leishmaniasis. We observed a 60% protection against infection in dogs immunized by DNA-LACK prime/rVV/-LACK boost while two doses of DNA-LACK did not elicit protection against the disease. The interleukin 4 (IL-4), interferon gamma (IFNgamma) and IL-12 (p40 subunit) cytokine mRNA expression profiles in PBMC as well as lymphocyte proliferative response and the IgG2/IgG1 ratios specific for LACK suggest that in vaccinated animals there is triggering of cellular immune responses. This type of DNA/rVV prime/boost immunization approach may have utility against visceral leishmaniasis in dogs.
Vaccine | 2002
Rosa M. Gonzalo; Gustavo del Real; Juan Rodríguez; D. Rodriguez; Ritva Heljasvaara; Pilar Lucas; Vicente Larraga; Mariano Esteban
A heterologous prime-boost vaccination with DNA vectors and vaccinia virus recombinants (VVr) has been shown to enhance specific cellular immune responses and to elicit significant protection against pathogens in animal models. In this study, we have analyzed, in the leishmaniasis cutaneous murine model, the effectiveness of this prime-boost strategy by immunizing with a DNA vector followed by boost with a VVr expressing the same Leishmania infantum P36/LACK antigen. After DNA priming and VVr boost, we challenged susceptible BALB/c mice with live L. major promastigotes, and examined the increase in footpad lesion size and parasite load in draining lymph nodes. Compared to controls, we observed reduction of up to 70% in lesion size and 1000-fold in parasite load. DNA prime-VVr boost before challenge elicited a Th1 type immune response in spleen cells from immunized animals. This DNA/VVr vaccination approach could be of utility in the prophylaxis against leishmaniasis.
International Journal for Parasitology | 2010
Pedro J. Alcolea; Ana Alonso; Manuel J. Gómez; Inmaculada Moreno; Mercedes Domínguez; Víctor Parro; Vicente Larraga
Leishmania infantum is the causative agent of zoonotic visceral leishmaniasis in the Mediterranean Basin. The promastigote and amastigote stages alternate in the life cycle of the parasite, developing inside the sand-fly gut and inside mammalian phagocytic cells, respectively. High-throughput genomic and proteomic analyses have not focused their attention on promastigote development, although partial approaches have been made in Leishmania major and Leishmania braziliensis. For this reason we have studied the expression modulation of an etiological agent of visceral leishmaniasis throughout the life cycle, which has been performed by means of complete genomic microarrays. In the context of constitutive genome expression in Leishmania spp. described elsewhere and confirmed here (5.7%), we found a down-regulation rate of 68% in the amastigote stage, which has been contrasted by binomial tests and includes the down-regulation of genes involved in translation and ribosome biogenesis. These findings are consistent with the hypothesis of pre-adaptation of the parasite to intracellular survival at this stage.
Infection and Immunity | 2004
Eduardo Fonseca Pinto; Roberta Olmo Pinheiro; Alice Rayol; Vicente Larraga; Bartira Rossi-Bergmann
ABSTRACT We have previously demonstrated that oral delivery of a disease-promoting particulated antigen of Leishmania amazonensis (LaAg) partially protects mice against cutaneous leishmaniasis. In the present work, we sought to optimize a mucosal vaccine by using the intranasal route for delivery of different antigen preparations, including (i) LaAg, (ii) soluble recombinant p36/LACK leishmanial antigen (LACK), and (iii) plasmid DNA encoding LACK (LACK DNA). BALB/c mice that received two intranasal doses of 10 μg of LaAg and were challenged 1 week postvaccination with L. amazonensis developed delayed but effective control of lesion growth. A diminished parasite burden was accompanied by enhancement of both gamma interferon (IFN-γ) and interleukin-10 levels in the lesion-draining lymph nodes. The vaccine efficacy improved with time. At 4 months postvaccination, when a strong parasite-specific TH1-type response was present in vivo, the infection was controlled for at least 5 months after challenge. In contrast to the particulated LaAg, soluble LACK (10 μg/dose) had no effect. Interestingly, LACK DNA (30 μg/dose), but not empty DNA, promoted rapid and durable protective immunity. Parasite growth was effectively controlled, and at 5 months after challenge LACK-reactive cells in both the mucosal and lesion-draining lymph nodes produced high levels of IFN-γ. These results demonstrate for the first time the feasibility of using the intranasal route for long-lived memory vaccination against cutaneous leishmaniasis with adjuvant-free crude antigens or DNA.
BMC Genomics | 2010
Pedro J. Alcolea; Ana Alonso; Manuel J. Gómez; Alicia Sánchez-Gorostiaga; Mercedes Moreno-Paz; Eduardo González-Pastor; Alfredo Toraño; Víctor Parro; Vicente Larraga
BackgroundThe extracellular promastigote and the intracellular amastigote stages alternate in the digenetic life cycle of the trypanosomatid parasite Leishmania. Amastigotes develop inside parasitophorous vacuoles of mammalian phagocytes, where they tolerate extreme environmental conditions. Temperature increase and pH decrease are crucial factors in the multifactorial differentiation process of promastigotes to amastigotes. Although expression profiling approaches for axenic, cell culture- and lesion-derived amastigotes have already been reported, the specific influence of temperature increase and acidification of the environment on developmental regulation of genes has not been previously studied. For the first time, we have used custom L. infantum genomic DNA microarrays to compare the isolated and the combined effects of both factors on the transcriptome.ResultsImmunofluorescence analysis of promastigote-specific glycoprotein gp46 and expression modulation analysis of the amastigote-specific A2 gene have revealed that concomitant exposure to temperature increase and acidification leads to amastigote-like forms. The temperature-induced gene expression profile in the absence of pH variation resembles the profile obtained under combined exposure to both factors unlike that obtained for exposure to acidification alone. In fact, the subsequent fold change-based global iterative hierarchical clustering analysis supports these findings.ConclusionsThe specific influence of temperature and pH on the differential regulation of genes described in this study and the evidence provided by clustering analysis is consistent with the predominant role of temperature increase over extracellular pH decrease in the amastigote differentiation process, which provides new insights into Leishmania physiology.
Microbes and Infection | 2001
Rosa M. Gonzalo; Juan Rodríguez; D. Rodriguez; Gloria Gonzalez-Aseguinolaza; Vicente Larraga; Mariano Esteban
In susceptible mice Leishmania infection triggers a CD4(+) Th2 response that has been correlated with evasion of the host immune system. To develop approaches that might trigger a Th1 response leading to protection against Leishmania we generated vaccinia virus recombinants (VVr) expressing the relevant p36/LACK protein of Leishmania infantum (VVp36) or co-expressing p36/LACK and interleukin-12 (VVp36IL12). Susceptible BALB/c mice were immunized with the VVr in various prime/booster protocols that included purified p36/LACK protein, followed 3 weeks later by a challenge with live L. major promastigotes. The course of the infection was monitored by measuring lesion development, parasite load and immunological parameters (IFN-gamma and IL-10 secretion by in vitro-stimulated lymphocytes, and specific IgG isotypes), before and after challenge. We found protocols of prime/booster immunization (VVp36/VVp36; VVp36IL12/p36; p36/VVp36IL12) that elicited different levels of protection in infected animals. The protocol of priming with purified p36 followed by a booster with VVp36IL12 induced 52% reduction in lesion size and a two-log unit reduction in parasite load. This partial protection correlated with activation of a specific Th1 type of immune response. These protocols could be of interest in the prophylaxis against Leishmania spp. and other parasitic diseases.
Genomics | 2009
Pedro J. Alcolea; Ana Alonso; Alicia Sánchez-Gorostiaga; Mercedes Moreno-Paz; Manuel J. Gómez; Irene Ramos; Víctor Parro; Vicente Larraga
Metacyclic promastigotes are transmitted during bloodmeals after development inside the gut of the sandfly vector. The isolation from axenic cultures of procyclic and metacyclic promastigotes by peanut lectin agglutination followed by differential centrifugation is controversial in Leishmania infantum. The purpose of this study has been to isolate both fractions simultaneously from the same population in stationary phase of axenic culture and compare their expression profiles by whole-genome shotgun DNA microarrays. The 317 genes found with meaningful values of stage-specific regulation demonstrate that negative selection of metacyclic promastigotes by PNA agglutination is feasible in L. infantum and both fractions can be isolated. This subpopulation up-regulates a cysteine peptidase A and several genes involved in lipophosphoglycan, proteophosphoglycan and glycoprotein biosynthesis, all related with infectivity. In fact, we have confirmed the increased infection rate of PNA(-) promastigotes by U937 human cell line infection experiments. These data support that metacyclic promastigotes are related with infectivity and the lack of agglutination with PNA is a phenotypic marker for this subpopulation.
PLOS Neglected Tropical Diseases | 2010
Jean-Claude Dujardin; Sócrates Herrera; Virgillio do Rosario; Jorge Arevalo; Marleen Boelaert; Herman J Carrasco; Rodrigo Correa-Oliveira; Lineth Garcia; Eduardo Gotuzzo; Theresa W. Gyorkos; Alexis M. Kalergis; Gustavo Kourí; Vicente Larraga; Pascal Lutumba; Maria Angeles Marcias Garcia; Pablo Manrique-Saide; Farrokh Modabber; Alberto Nieto; Gerd Pluschke; Carlos Robello; Antonieta Rojas de Arias; Martin Rumbo; Joce Ignatio Santos Preciado; Shyam Sundar; Jaime Torres; Faustino Torrico; Patrick Van der Stuyft; Kathleen Victoir; Ole F. Olesen
Global priorities for research in neglected infectious diseases (NIDs) can be assessed in different ways, but it is important to realize that regional priorities may significantly differ one from another. The region of Latin America and the Caribbean (LAC) is - along with Africa and Asia - more affected by NIDs than other regions of the world. Some of the Latin American NIDs are common to other continents, while others are very specific or disproportionately affect the Latin American region [1]-[3] (Table 1). Because of its huge ecological diversity, ongoing environmental changes, and massive migrations, LAC is also a catalyst for the (re-)emergence and spreading of NIDs, both inside and outside the subcontinent. Following a colloquium on NIDs in LAC held in Lima, Peru, between 12 and 14 November 2009, a thematic workshop was organized with the support of the European Commission (EC). It involved 29 scientists (16 from the Americas, two from the Democratic Republic of Congo and India, respectively, and nine from Europe) working on different NIDs and representing several research areas from basic to applied. This report summarizes the consensus comments of the expert group after oral and written consultation. It is envisaged that this document should stimulate a debate within the scientific community and serve as a recommendation for future actions by international or regional funding agencies in the area of NIDs in LAC.
Journal of Eukaryotic Microbiology | 2011
Pedro J. Alcolea; Ana Alonso; Vicente Larraga
ABSTRACT. A proteome analysis of the promastigote stage of the trypanosomatid parasite Leishmania infantum (MON‐1 zymodeme) is described here for the first time. Total protein extracts were prepared at early logarithmic and stationary phases of replicate axenic cultures and processed by 2D electrophoresis (pH 3–10). A total of 28 differentially regulated proteins were identified by matrix‐assisted laser desorption/ionization‐tandem time of flight mass spectrometry. This approach has revealed that the electron transfer flavoprotein (ETF) and the eukaryotic elongation factor 1α (eEF1α) subunit have the same differential expression pattern at the protein and mRNA levels, up‐regulation in the stationary phase. A low‐molecular‐weight isoform and an alternatively processed form of the eEF1α subunit have been detected. A 51 kDa subunit of replication factor A is up‐regulated in dividing logarithmic promastigotes. None of the proteins described here shows opposite differential regulation values with the corresponding mRNA levels. Taken together with previous approaches to the proteome and the transcriptome, this report contributes to the elucidation of the differential regulation patterns of the ETF, the eEF1α subunit, the 40S ribosomal protein S12, α‐tubulin and the T‐complex protein 1 subunit γ throughout the life cycle of the parasites from the genus Leishmania.
Vaccine | 2009
I. Ramos; Ana Alonso; A. Peris; J.M. Marcen; M.A. Abengozar; Pedro J. Alcolea; Juan Antonio Castillo; Vicente Larraga
Canine visceral leishmaniasis is a serious public health concern in the Mediterranean basin since dogs are the main Leishmania infantum reservoir. However, there is not a vaccination method in veterinary use in this area, and therefore the development of a vaccine against this parasite is essential for the possible control of the disease. Previous reports have shown the efficacy of heterologous prime-boost vaccination with the pCIneo plasmid and the poxvirus VV (both Western Reserve and MVA strains) expressing L. infantum LACK antigen against canine leishmaniasis. As pCIneo-LACK plasmid contains antibiotic resistance genes, its use as a profilactic method is not recommended. Hence, the antibiotic resistance gene free pORT-LACK plasmid is a more suitable tool for its use as a vaccine. Here we report the protective and immunostimulatory effect of the prime-boost pORT-LACK/MVA-LACK vaccination tested in a canine experimental model. Vaccination induced a reduction in clinical signs and in parasite burden in the liver, an induction of the Leishmania-specific T cell activation, as well as an increase of the expression of Th1 type cytokines in PBMC and target organs.