Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vicente Martínez-Soria is active.

Publication


Featured researches published by Vicente Martínez-Soria.


Chemosphere | 2008

Performance evaluation of a biotrickling filter treating a mixture of oxygenated VOCs during intermittent loading

Feliu Sempere; Carmen Gabaldón; Vicente Martínez-Soria; Paula Marzal; Josep M. Penya-Roja; F. Javier Álvarez-Hornos

Laboratory scale-studies on the biodegradation of a 1:1:1 weight mixture of three oxygenated volatile organic compounds (VOCs), ethanol, ethyl acetate, and methyl-ethyl ketone (MEK) in a biotrickling filter (BTF) were carried out using two identically sized columns, filled with different polypropylene rings. The performance of the BTFs was examined for a period of 10 months applying several operational strategies. Similar performance was obtained for both supports. Intermittent flow rate of trickling liquid was shown beneficial to improve the removal efficiency (RE). Continuous feeding of VOC resulted in an excessive accumulation of biomass so high pressure drop was developed in less than 20-30 d of operation. Intermittent VOC loading with night and weekend feed cut-off periods passing dry air, but without addition of water, was shown as a successful operational mode to control the thickness of the biofilm. In this case, operation at high inlet loads (ILs) was extended for more than 75 d maintaining high REs and low pressure drops. Outlet emission concentrations lower than 100 mg Cm(-3) were obtained for ILs up to 100 g Cm(-3)h(-1) working at 15s of empty bed residence time. The most easily biodegradable compounds ethanol and ethyl acetate were used primarily than MEK. After a 3-wk-starvation period, the system performance was almost restored since the first d of operation, being the removal of the less biodegradable compound, MEK, partially deteriorated.


Journal of The Air & Waste Management Association | 2009

Performance of a Pilot-Scale Biotrickling Filter in Controlling the Volatile Organic Compound Emissions in a Furniture Manufacturing Facility

Vicente Martínez-Soria; Carmen Gabaldón; Josep M. Penya-Roja; Jordi Palau; F. Javier Álvarez-Hornos; Feliu Sempere; Carlos Soriano

Abstract A 0.75-m3 pilot-scale biotrickling filter was run for over 1 yr in a Spanish furniture company to evaluate its performance in the removal of volatile organic compounds (VOCs) contained in the emission of two different paint spray booths. The first one was an open front booth used to manually paint furniture, and the second focus was an automatically operated closed booth operated to paint pieces of furniture. In both cases, the VOC emissions were very irregular, with rapid and extreme fluctuations. The pilot plant was operated at an empty bed residence time (EBRT) ranging from 10 to 40 sec, and good removal efficiencies of VOCs were usually obtained. When a buffering activated carbon prefllter was installed, the system performance was improved considerably, so a much better compliance with legal constraints was reached. After different shutdowns in the factory, the period to recover the previous performance of the biotrickling reactor was minimal. A weekend dehydration strategy was developed and implemented to control the pressure drop associated with excessive biomass accumulation.


Journal of Environmental Management | 2011

Influence of ground tire rubber on the transient loading response of a peat biofilter.

F.J. Álvarez-Hornos; Marta Izquierdo; Vicente Martínez-Soria; Josep-Manuel Penya-roja; Feliu Sempere; Carmen Gabaldón

The effect of using ground tire rubber (GTR) as an adsorptive material in the removal of a 2:1:1 weight mixture of n-butyl acetate, toluene and m-xylene by using a peat biofilter under different intermittent conditions was investigated. The performance of two identical size biofilters, one packed with fibrous peat alone and the other with a 3:1 (vol) fibrous peat and GTR mixture, was examined for a period of four months. Partition coefficients of both materials were measured. Values of 53, 118 and 402 L kg(-1) were determined for n-butyl acetate, toluene and m-xylene in peat, respectively; and values of 40, 609 and 3035 L kg(-1) were measured for the same compounds in GTR. Intermittent load feeding of 16 h per day, 5 days per week working at an EBRT of 60 s and an inlet VOC concentration of 0.3 g C m(-1), resulted in removal efficiencies higher than 90% for both biofilters, indicating that the addition of GTR did not adversely affect the behavior of the bioreactor. Full removal of n-butyl acetate was obtained for both biofilters. GTR improved the removal of the aromatics in the first part of the biofilter, facilitating lower penetration of the toluene and m-xylene into the bed. A 31-day starvation period was applied and intermittent operation subsequently restarted. In both biofilters, high removal efficiencies after a re-acclimation period of two days were achieved. A shock loading test related to 1-h peaks of three- and four-fold increases in its baseline concentration (0.30 g C m(-3)) was applied in both biofilters. For the biofilter packed with the peat and GTR mixture, attenuation greater than 60% was observed in the maximum outlet concentration when compared to the biofilter packed with peat alone.


Engineering in Life Sciences | 2009

Evaluation of a combined activated carbon prefilter and biotrickling filter system treating variable ethanol and ethyl acetate gaseous emissions.

Feliu Sempere; Carmen Gabaldón; Vicente Martínez-Soria; Josep M. Penya-Roja; F.J. Álvarez-Hornos

The removal of a 1:1 by weight mixture of ethanol and ethyl acetate was studied in a gas phase biotrickling filter running under conditions that simulated industrial emissions from the flexographic sector, i.e. discontinuous loading (twelve hours per day and five days per week) and oscillating concentration of the inlet stream. Three sets of experimental conditions were tested in which empty‐bed residence time varied from 60 to 25 s (inlet loads from 50 to 90 g C m−3 h−1). The biotrickling filter reached a maximum elimination capacity of 48.5 g C m−3 h−1 (removal efficiency=68.9%) for an empty‐bed residence time of 40 s. A decrease in the residence time from 40 to 25 s adversely affected the elimination capacity (40.3 g C m−3 h−1, removal efficiency=46.6%). For the three tested residence times, outlet concentrations during pollutant feeding were above 100 mg C m−3 (EU legal limit for flexographic facilities). Then an activated carbon prefilter was installed to buffer the fluctuating concentration, enabling a more stable operation. The desorbed pollutant from the activated carbon during non‐feeding hours also served as an extra source of substrate, avoiding severe starvation. The use of the activated carbon prefilter with a volume 25 times lower than that of the bioreactor was shown to reach an average outlet emission concentration lower than 50 mg C m−3 operating the biotrickling filter at an empty‐bed residence time of 40 s, with a maximum elimination capacity of 59.6 g C m−3 h−1 (removal efficiency=92.0%).


Water Science and Technology | 2011

Control of VOC emissions from a flexographic printing facility using an industrial biotrickling filter.

Feliu Sempere; Vicente Martínez-Soria; Josep-Manuel Penya-roja; A. Waalkens; Carmen Gabaldón

The study of an industrial unit of biotrickling filter for the treatment of the exhaust gases of a flexographic facility was investigated over a 2-year period with the objective to meet the volatile organic compound (VOC) regulatory emission limits. Increasing the water flow rate from 2 to 40 m(3) h(-1) improved the performance of the process, meeting the VOC regulation when 40 m(3) h(-1) were used. An empty bed residence time (EBRT) of 36 s was used when the inlet air temperature was 18.7 °C, and an EBRT as low as 26 s was set when the inlet temperature was 26.8 °C. During this long-term operation, the pressure drop over the column of the bioreactor was completely controlled avoiding clogging problems and the system could perfectly handle the non-working periods without VOC emission, demonstrating its robustness and feasibility to treat the emission of the flexographic sector.


Journal of Environmental Management | 2018

Anaerobic degradation of glycol ether-ethanol mixtures using EGSB and hybrid reactors: Performance comparison and ether cleavage pathway

P. Ferrero; Pau San-Valero; Carmen Gabaldón; Vicente Martínez-Soria; Josep-Manuel Penya-roja

The anaerobic biodegradation of ethanol-glycol ether mixtures as 1-ethoxy-2-propanol (E2P) and 1-methoxy-2-propanol (M2P), widely used in printing facilities, was investigated by means of two laboratory-scale anaerobic bioreactors at 25oC: an expanded granular sludge bed (EGSB) reactor and an anaerobic hybrid reactor (AHR), which incorporated a packed bed to improve biomass retention. Despite AHR showed almost half of solid leakages compared to EGSB, both reactors obtained practically the same performance for the operating conditions studied with global removal efficiencies (REs) higher than 92% for organic loading rates (OLRs) as high as 54 kg of chemical oxygen demand (COD) m-3 d-1 (REs of 70% and 100% for OLRs of 10.6 and 8.3 kg COD m-3 d-1 for E2P and M2P, respectively). Identified byproducts allowed clarifying the anaerobic degradation pathways of these glycol ethers. Thus, this study shows that anaerobic scrubber can be a feasible treatment for printing emissions.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2018

Removal of acetone from air emissions by biotrickling filters: providing solutions from laboratory to full-scale

Pau San-Valero; Carmen Gabaldón; F.J. Álvarez-Hornos; Marta Izquierdo; Vicente Martínez-Soria

Abstract A full-scale biotrickling filter (BTF) treating acetone air emissions of wood-coating activities showed difficulties to achieve outlet concentrations lower than 125 mg C m−3, especially for high inlet concentrations and oscillating emissions. To solve this problem, a laboratory investigation on acetone removal was carried out simulating typical industrial conditions: discontinuous and variable inlet concentrations and intermittent spraying. The results were evaluated in terms of removal efficiency and outlet gas emission pattern. Industrial emissions and operational protocols were simulated: inlet load up to 70 g C m−3 h−1 during 2 cycles of 4 h per day and intermittent trickling of 15 min per hour. The outlet gas stream of the pollutant was affected by intermittent spraying, causing a fugitive emission of pollutant. Complete removal efficiency was obtained during non-spraying. Average removal efficiencies higher than 85% were obtained, showing the feasibility of BTF to treat acetone. The outlet gas stream showed a clear dependence on the pH of the trickling liquid, decreasing the removal at pH < 5.5. Thus, a proper control of alkalinity, with regular NaHCO3 addition, was required for successful operation. The laboratory findings were fruitfully transferred to the industry, and the removal of acetone by full-scale BTF was improved.


Bioresource Technology | 2008

Biofiltration of ethylbenzene vapours: influence of the packing material.

F.J. Álvarez-Hornos; Carmen Gabaldón; Vicente Martínez-Soria; Miguel Martín; Paula Marzal; Josep-Manuel Penya-roja


Biotechnology and Bioengineering | 2007

Long-term performance of peat biofilters treating ethyl acetate, toluene, and its mixture in air

F. Javier Álvarez-Hornos; Carmen Gabaldón; Vicente Martínez-Soria; Paula Marzal; Josep-Manuel Penya-roja; Marta Izquierdo


Journal of Chemical Technology & Biotechnology | 2006

Removal of TEX vapours from air in a peat biofilter: influence of inlet concentration and inlet load

Carmen Gabaldón; Vicente Martínez-Soria; Miguel Martín; Paula Marzal; Josep-Manuel Penya-roja; F. Javier Álvarez-Hornos

Collaboration


Dive into the Vicente Martínez-Soria's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jordi Palau

University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge