Vicente Micol
University of Murcia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vicente Micol.
Biochimica et Biophysica Acta | 1993
Francisco López-García; Vicente Micol; José Villalaín; Juan C. Gómez-Fernández
The interaction of 1,2-dipalmitoylglycerol (DPG) with dipalmitoylphosphatidylserine (DPPS) has been studied in aqueous dispersion in the presence and in the absence of Ca2+ by using Fourier transform infrared spectroscopy (FT-IR) and 45Ca(2+)-binding. FT-IR showed that DPG increased the phase transition of DPPS and induced a rigidification of the DPPS/DPG-Ca2+ complex. In the absence of Ca2+, the incorporation of DPG produced an increase in the proportion of dehydrated carbonyl groups in the mixture of DPPS plus DPG whereas, in the presence of Ca2+, DPG suppressed the solid-solid phase transition of phosphatidylserine-Ca2+ complexes. The phosphate band of DPPS was analyzed using a multivariate statistical analysis, indicating that DPG induced a higher dehydration of the PO2- group in the presence of subsaturating Ca2+ concentrations. Even very low concentrations of DPG, such as 2 mol%, already produced a significant effect. In the presence of both DPG and Ca2+, dehydration of DPPS increased, so that full dehydration was reached at a DPPS/Ca2+ molar ratio of 2.94 instead of 2.04 as observed for pure DPPS. However, the stoichiometry of the binding of Ca2+ to DPPS was not significantly altered by the inclusion of DPG as revealed by 45Ca(2+)-binding experiments, indicating that, in this situation, full dehydration of the PO2- groups of DPPS was reached when approx. 2 out of every 3 molecules of DPPS were binding Ca2+. The effects reported here for the interaction of DPG with DPPS may be significant for a number of biological situations where Ca2+, phosphatidylserine and diacylglycerols are involved, such as fusion of membranes or the activation of protein kinase C, where the dehydration effect produced by diacylglycerols may explain, at least in part, their effects.
Biochimica et Biophysica Acta | 1990
Vicente Micol; Francisco J. Aranda; José Villalín; Juan C. Gómez-Fernández
The effect of vitamin E, in its major form alpha-tocopherol and its synthetic analog alpha-tocopheryl acetate, on phosphatidylethanolamine lipid polymorphism has been studied by mean of differential scanning calorimetry and 31P-nuclear magnetic resonance techniques. From the interaction of these tocopherols with dielaidoylphosphatidylethanolamine it is concluded that both molecules promote the formation of the hexagonal HII phase at temperatures lower than those of the pure phospholipid. When the tocopherols were incorporated in the saturated dimiristoylphosphatidylethanolamine, which has been shown not to undergo bilayer to hexagonal HII phase transition, up to 90 degrees C, they induce the phospholipid to partially organize in hexagonal HII phase. From our experiments it is shown that alpha-tocopherol is more effective than its analog in promoting HII phase in these systems. It is also shown that, while alpha-tocopheryl acetate does not significantly perturb the gel to liquid-crystalline phase transition of dimirystoylphosphatidylethanolamine, alpha-tocopherol does so and more than one peak appears in the calorimetric profile, indicating that lateral phase separations are taking place.
Biochemical Journal | 1999
Pilar Sánchez-Piñera; Vicente Micol; Senena Corbalán-García; Juan C. Gómez-Fernández
The lipid activation of protein kinase C alpha (PKC alpha) has been studied by comparing the activation capacity of different 1, 2-diacylglycerols and 1,3-diacylglycerols incorporated into mixed micelles or vesicles. Unsaturated 1,2-diacylglycerols were, in general, more potent activators than saturated ones when 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS)/Triton X-100 mixed micelles and pure POPS vesicles were used. In contrast, these differences were not observed when 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/POPS (4:1, molar ratio) vesicles were used. Diacylglycerols bearing short fatty acyl chains showed a very high activation capacity, however, the capacity was less in mixed micelles. Furthermore, 1, 2-diacylglycerols had a considerably higher activating capacity than 1,3-diacylglycerols in POPS/Triton X-100 mixed micelles and in POPC/POPS vesicles. However, the differences between the two types of diacylglycerols were smaller when pure POPS vesicles were used. Differential scanning calorimetry (DSC) showed that POPC/POPS membrane samples containing diacylglycerols had endothermic transitions in the presence of 200 microM Ca2+ and 5 mM Mg2+. Transitions were not detected when using pure POPS vesicles due to the formation of dehydrated phases as demonstrated by FTIR (Fourier-transform infrared) spectroscopy. PKC alpha binding studies, performed by differential centrifugation in the presence of 200 microM Ca2+ and 5 mM Mg2+, showed that 1,2-sn-dioleoylglycerol (1, 2-DOG) was more effective than 1,3-dioleoylglycerol (1,3-DOG) in promoting binding to POPC/POPS vesicles. However, when pure POPS vesicles were used, PKC alpha was able to bind to membranes containing either 1,2-DOG or 1,3-DOG to the same extent.
Biochimica et Biophysica Acta | 1993
Francisco López-García; Vicente Micol; José Villalaín; Juan C. Gómez-Fernández
The interaction of sphingosine (SP) and stearylamine (SA) with dipalmitoylphosphatidylserine (DPPS) has been studied by using differential scanning calorimetry (DSC) and phosphorus nuclear magnetic resonance (31P-NMR). DSC showed that SP and SA rigidified the membranes, forming an azeotropic mixture with DPPS. The azeotropic mixture which was formed between DPPS and SP was found at a DPPS/SP molar ratio of 2:1 whereas SA and DPPS formed an azeotropic mixture at a DPPS/SA molar ratio of 1:1. An eutectic point was observed at 85 mol% of SP and 90 mol% of SA in DPPS. 31P-NMR showed the presence of a lamellar phase at DPPS/SP and DPPS/SA molar ratios lower than 1:1, whereas at higher molar ratios and at high temperatures, besides the lamellar phase, an isotropic component was detected. It was found that, at physiological pH, both SP and SA were protonated in a large extent, i.e., positively charged, since their apparent pK in the membrane were 9.1 and 8.9, respectively. The results reported in this work may be relevant to understand a number of biological effects produced by these positively charged molecules, due to their electrostatic interaction with negatively charged phospholipids.
Biophysical Journal | 1999
Vicente Micol; Pilar Sánchez-Piñera; José Villalaín; Ana de Godos; Juan C. Gómez-Fernández
Lipid activation of protein kinase C alpha (PKC alpha) was studied by using a model mixture containing 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1, 2-dimyristoyl-sn-glycero-3-phosphoserine (DMPS), and 1, 2-dimyristoyl-sn-glycerol (1,2-DMG). This lipid mixture was physically characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and 31P-nuclear magnetic resonance (31P-NMR). Based on these techniques, a phase diagram was constructed by keeping a constant DMPC/DMPS molar ratio of 4:1 and changing the concentration of 1,2-DMG. This phase diagram displayed three regions and two compounds: compound 1 (C1), with 45 mol% 1,2-DMG, and compound 2 (C2), with 60 mol% 1,2-DMG. When the phase diagram was elaborated in the presence of Ca2+ and Mg2+, at concentrations similar to those used in the PKC alpha activity assay, the boundaries between the regions changed slightly and C1 had 35 mol% 1,2-DMG. The activity of PKC alpha was studied at several temperatures and at different concentrations of 1,2-DMG, with a maximum of activity reached at 30 mol% 1,2-DMG and lower values at higher concentrations. In the presence of Ca2+ and Mg2+, maximum PKC alpha activity occurred at concentrations of 1,2-DMG that were close to the boundary in the phase diagram between region 1, where compound C1 and the pure phospholipid coexisted in the gel phase, and region 2, where compounds C1 and C2 coexisted. These results suggest that the membrane structure corresponding to a mixture of 1,2-DMG/phospholipid complex and free phospholipid is better able to support the activity of PKC alpha than the 1,2-DMG/phospholipid complex alone.
Chemistry and Physics of Lipids | 1992
Antonio Ortiz; Francisco J. Aranda; José Villalaín; Carmen San Martin; Vicente Micol; Juan C. Gómez-Fernández
The effect of 1,2-dioleoyglycerol (1,2-DOG) on the promotion of Ca(2+)-induced fusion of phosphatidylserine/phosphatidylcholine (PS/PC) vesicles was studied. 1,2-DOG is able to induce the mixing of membrane lipids at concentrations of 10 mol% without mixing of vesicular contents. At concentrations of 20 mol% or higher, 1,2-DOG promotes fusion, lipid and content mixing, of LUV composed of an equimolar mixture of PS and PC, which otherwise are unable to fuse in the presence of Ca2+. Fusion was demonstrated by fluorescence assays monitoring mixing of aqueous vesicular contents and mixing of membrane lipids. Studies by Fourier transform infrared spectroscopy provided evidence for a fusion mechanism different to that of Ca(2+)-induced fusion of pure PS vesicles. Final equilibrium structures were characterized by 31P-NMR and freeze-fracture electron microscopy. Ca(2+)-induced fusion of 1,2-DOG containing vesicles is accompanied by the formation of isotropic structures which are shown to correspond to structures with lipidic particle morphology. The possible fusion mechanisms and implications are discussed.
Biochimica et Biophysica Acta | 1999
Pilar Sánchez-Piñera; Francisco J. Aranda; Vicente Micol; Ana de Godos; Juan C. Gómez-Fernández
The capacity of the antineoplastic ether lipid 1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine (ET-18-OCH3) to modulate the polymorphic properties of dielaidoylphosphatidylethanolamine has been studied using biophysical techniques. Differential scanning calorimetry showed that ET-18-OCH3 depresses the onset of the Lbeta to Lalpha phase transition, decreasing also DeltaH of the transition. At the same time, the onset of the transition from Lalpha to inverted hexagonal HII phase was gradually increased as the ether lipid concentration was increased, totally disappearing at concentrations higher than 5 mol%. Small-angle X-ray diffraction and 31P-NMR confirmed that ET-18-OCH3 induced that the appearance of the inverted hexagonal HII phase was shifted towards higher temperatures completely disappearing at concentrations higher than 5 mol%. These results were used to elaborate a partial phase diagram and they were discussed as a function of the molecular action of ET-18-OCH3.
Chemistry and Physics of Lipids | 1990
Vicente Micol; Antonio Ortiz; Juan C. Gómez-Fernández
The distribution of free fatty acids at equilibrium after incubation of small sonicated unilamellar vesicles (SUV) with large unilamellar vesicles (LUV) of different lipid composition has been determined. Stearic acid (SA) and oleic acid (OA) showed similar preferences for SUV and LUV of egg yolk phosphatidylcholine (EYPC). Both ionized and protonated forms of the free fatty acids (FFAs) behaved similarly with respect to the equilibrium distribution between EYPC of different size. The charge of the vesicles was found, however, to be important, since both FFAs in their ionized form preferentially associated to vesicles of phosphatidylcholine (PC) as compared with vesicles of phosphatidylglycerol (PC). While SA preferred membranes in the gel state, OA showed preference for the membrane in fluid state. The insertion of both OA and SA in phosphatidylethanolamine (PE)/phosphatidylcholine vesicles is less favourable than in vesicles of pure PC. All these data suggest that membrane lipid content may play a role in determining the distribution of free fatty acids among the membranes of a cell.
Archives of Biochemistry and Biophysics | 1999
Josefa Garcia-Garcia; Vicente Micol; Ana de Godos; Juan C. Gómez-Fernández
Annals of the New York Academy of Sciences | 1989
Juan C. Gómez-Fernández; José Villalaín; Francisco J. Aranda; Antonio Ortiz; Vicente Micol; Ana Coutinho; Mário N. Berberan-Santos; Manuel Prieto